




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为两个不同平面,为直线且,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知向量,若,则实数()A. B. C. D.3.已知椭圆的左焦点为A. B. C. D.4.已知全集,集合,,那么集合()A. B. C. D.5.设是函数的定义域,若存在,使,则称是的一个“次不动点”,也称在区间I上存在“次不动点”.若函数在上存在三个“次不动点”,则实数的取值范围是()A. B. C. D.6.将曲线按照伸缩变换后得到的曲线方程为()A. B.C. D.7.设数列的前项和为,若,,成等差数列,则的值是()A. B. C. D.8.在(x-)10的展开式中,的系数是()A.-27 B.27 C.-9 D.99.曲线与直线围成的封闭图形的面积为()A. B. C. D.10.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列,则的值为()A.8 B.10 C.12 D.1611.若二次函数图象的顶点在第四象限且开口向上,则导函数的图象可能是A. B.C. D.12.观察,,,由归纳推理可得:若定义在上的函数满足,记为的导函数,则=A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知空间向量,,(其中、),如果存在实数,使得成立,则_____________.14.已知函数,若对任意,恒成立,则实数的取值范围是_____15.一袋中有大小相同的4个红球和2个白球,给出下列结论:从中任取3球,恰有一个白球的概率是;从中有放回的取球6次,每次任取一球,则取到红球次数的方差为;从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.其中所有正确结论的序号是______.16.要用三根数据线将四台电脑A,B,C,D连接起来以实现资源共享,则不同的连接方案种数为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-4:坐标系与参数方程已知在直角坐标系中,直线的参数方程为,(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点是曲线上的一个动点,求它到直线的距离的取值范围.18.(12分)在平面直角坐标系中,直线的普通方程为,曲线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系.(Ⅰ)求直线的参数方程和极坐标方程;(Ⅱ)设直线与曲线相交于两点,求的值.19.(12分)盒子中放有大小形状完全相同的个球,其中个红球,个白球.(1)某人从这盒子中有放回地随机抽取个球,求至少抽到个红球的概率;(2)某人从这盒子中不放回地从随机抽取个球,记每抽到个红球得红包奖励元,每抽到个白球得到红包奖励元,求该人所得奖励的分布列和数学期望.20.(12分)莫言是中国首位获得诺贝尔文学奖的文学家,国人欢欣鼓舞。某高校文学社从男女生中各抽取50名同学调查对莫言作品的了程度,结果如下:阅读过莫言的作品数(篇)0~2526~5051~7576~100101~130男生36111812女生48131510
(1)试估计该学校学生阅读莫言作品超过50篇的概率.(2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否有的把握认为“对莫言作品的非常了解”与性别有关?非常了解一般了解合计男生女生合计注:K2=P(K2≥k0)0.250.150.100.050.025k01.3232.0722.7063.8415.02421.(12分)在直角坐标系中,以原点为极点,以轴正半轴为极轴,圆的极坐标方程为.(1)将圆的极坐标方程化为直角坐标方程;(2)过点作斜率为1直线与圆交于两点,试求的值.22.(10分)设函数.(1)求在处的切线方程;(2)当时,,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
当时,若,则推不出;反之可得,根据充分条件和必要条件的判断方法,判断即可得到答案.【详解】当时,若且,则推不出,故充分性不成立;当时,可过直线作平面与平面交于,根据线面平行的性质定理可得,又,所以,又,所以,故必要性成立,所以“”是“”的必要不充分条件.故选:B.【点睛】本题主要考查充分条件和必要条件的判定,关键是掌握充分条件和必要条件的定义,判断是的什么条件,需要从两方面分析:一是由条件能否推得条件;二是由条件能否推得条件.2、B【解析】
由题得,解方程即得解.【详解】因为,所以.故选B【点睛】本题主要考查向量垂直的坐标表示,意在考查学生对该知识的理解掌握水平和分析推理能力.3、B【解析】
代入得,解得,由此可得三角形ABF为直角三角形.OF=5,即c=5.由椭圆为中心对称图形可知当右焦点为时,,【考点定位】本题考查椭圆定义,解三角形相关知识以及椭圆的几何性质.4、C【解析】
先求得集合的补集,然后求其与集合的交集.【详解】依题意,故,故选C.【点睛】本小题主要考查集合补集的运算,考查集合交集的运算,属于基础题.5、A【解析】
由已知得在上有三个解。即函数有三个零点,求出,利用导函数性质求解。【详解】因为函数在上存在三个“次不动点”,所以在上有三个解,即在上有三个解,设,则,由已知,令得,即或当时,,;,,要使有三个零点,则即,解得;当时,,;,,要使有三个零点,则即,解得;所以实数的取值范围是故选A.【点睛】本题考查方程的根与函数的零点,以及利用导函数研究函数的单调性,属于综合体。6、B【解析】
根据伸缩变换的关系表示已知函数的坐标,代入已知函数的表示式得解.【详解】由伸缩变换,得,代入,得,即.选B【点睛】本题考查函数图像的伸缩变换,属于基础题.7、B【解析】
因为成等差数列,所以,当时,;当时,,即,即,数列是首项,公比的等比数列,,故选B.8、D【解析】试题分析:通项Tr+1=x10-r(-)r=(-)rx10-r.令10-r=6,得r=4.∴x6的系数为9考点:二项式定理9、B【解析】由,直线,令,可得或,曲线与直线交于点或,因此围成的封闭图形的面积,故选B.10、C【解析】
数列,是等比数列,公比为2,前7项和为1016,由此可求得首项,得通项公式,从而得结论.【详解】最下层的“浮雕像”的数量为,依题有:公比,解得,则,,从而,故选C.【点睛】本题考查等比数列的应用.数列应用题求解时,关键是根据题设抽象出数列的条件,然后利用数列的知识求解.11、A【解析】分析:先根据二次函数的判断出的符号,再求导,根据一次函数的性质判断所经过的象限即可.详解:∵函数的图象开口向上且顶点在第四象限,∴函数的图象经过一,三,四象限,
∴选项A符合,
故选:A.点睛:本题考查了导数的运算和一次函数,二次函数的图象和性质,属于基础题.12、D【解析】由归纳推理可知偶函数的导数是奇函数,因为是偶函数,则是奇函数,所以,应选答案D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用向量的坐标运算得出关于、、的方程组,解出即可得出的值.【详解】,,且,所以,解得,因此,.故答案为:.【点睛】本题考查空间向量共线的坐标运算,建立方程组求解是解题的关键,考查计算能力,属于基础题.14、【解析】
先将对任意,恒成立,转化为,利用基本不等式和函数单调性,分别研究对任意恒成立,和对任意恒成立,即可求出结果.【详解】等价于,即,①先研究对任意恒成立,即对任意恒成立,∵,当且仅当“”时取等号,∴;②再研究对任意恒成立,即对任意恒成立,∵函数在上单调递增,∴,∴;综上,实数的取值范围是.故答案为:.【点睛】本题主要考查不等式恒成立求参数的范围,熟记基本不等式以及函数单调性即可,属于常考题型.15、【解析】分析:①所求概率为,计算即得结论;
②利用取到红球次数可知其方差为;通过每次取到红球的概率可知所求概率为.详解:①从中任取3球,恰有一个白球的概率是,故正确;
②从中有放回的取球6次,每次任取一球,
取到红球次数,其方差为,故正确;
③从中有放回的取球3次,每次任取一球,每次取到红球的概率,
∴至少有一次取到红球的概率为,故正确.
故答案为:①②③.点睛:本题主要考查命题的真假判断,涉及概率的计算,考查学生的计算能力.16、【解析】
由题目可以联想到正方形的四个顶点,放上四台电脑,正方形的四条边和它的两条对角线,六条线中选3条,满足题意的种数为:全部方法减去不合题意的方法来解答.【详解】解:画一个正方形和它的两条对角线,在这6条线段中,选3条的选法有种.当中,4个直角三角形不是连接方案,故不同的连接方案共有种.故答案为:.【点睛】连线、搭桥、几何体棱上爬行路程、正方体顶点构成四面体等,是同一性质问题,一般要用排除法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】分析:(1)消去参数可以求出直线的普通方程,由,,能求出曲线的直角坐标方程;(2)设动点坐标,利用点到直线距离公式和三角函数的辅助角公式,确定距离的取值范围.详解:解:(1)消去参数整理得,直线的普通方程为:;将,,代入曲线的极坐标方程.曲线的直角坐标方程为(2)设点,则所以的取值范围是.分析:本题考查参数方程化普通方程,极坐标方程化直角坐标方程,同时考查圆上的一点到直线距离的最值,直线与圆相离情况下,也可以通过圆心到直线距离与半径的关系表示,即距离最大值,距离最小值.18、(Ⅰ)直线的参数方程为(为参数)极坐标方程为()(Ⅱ)5【解析】
(Ⅰ)直线的普通方程为,可以确定直线过原点,且倾斜角为,这样可以直接写出参数方程和极坐标方程;(Ⅱ)利用,把曲线的参数方程化为普通方程,然后把直线的参数方程代入曲线的普通方程中,利用根与系数的关系和参数的意义,可以求出的值.【详解】解:(Ⅰ)直线的参数方程为(为参数)极坐标方程为()(Ⅱ)曲线的普通方程为将直线的参数方程代入曲线中,得,设点对应的参数分别是,则,【点睛】本题考查了直线的参数方程化为普通方程和极坐标方程问题,同时也考查了直线与圆的位置关系,以及直线参数方程的几何意义.19、(1);(2)42元.【解析】
(1)分为三种情况,即抽到个红球,抽到个红球和抽到个红球,概率相加得到答案.(2)随机变量可能的取值为,计算每个数对应概率,得到分布列,计算数学期望得到答案.【详解】(1)记至少抽到个红球的事件为,法1:至少抽到个红球的事件,分为三种情况,即抽到个红球,抽到个红球和抽到个红球,每次是否取得红球是相互独立的,且每次取到红球的概率均为,所以,答:至少抽到个红球的概率为.法2:至少抽到个红球的事件的对立事件为次均没有取到红球(或次均取到白球),每次取到红球的概率均为(每次取到白球的概率均为),所以答:至少抽到个红球的概率为.(2)由题意,随机变量可能的取值为,,,,所以随机变量的分布表为:所以随机变量的数学期望为(元).【点睛】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力.20、(1)(2)见解析【解析】试题分析:(1)根据古典概型概率公式求出阅读某莫言作品在篇以上的频率,从而估计该校学生阅读莫言作品超过50篇概率;(2)利用公式K2=求得,与邻界值比较,即可得到结论.试题解析:(1)由抽样调查阅读莫言作品在50篇以上的频率为,据此估计该校学生阅读莫言作品超过50篇的概率约为;(2)非常了解一般了解合计男生302050女生252550合计5545100根据列联表数据得所以没有75%的把握认为对莫言作品的非常了解与性别有关.【方法点睛】本题主要考查古典概型概率公式以及独立性检验,属于难题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3)查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)21、(1);(2)【解析】
(Ⅰ)根据直线参数方程的一般式,即可写出,化简圆的极坐标方程,运用ρcosθ=x,ρsinθ=y,即可普通方程;
(Ⅱ)求出过点P(2,0)作斜率为1直线l的参数方程,代入到圆的方程中,得到关于t的方程,运用韦达定理,以及参数t的几何意义,即可求出结果.【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校管乐团管理制度
- 学校课间餐管理制度
- 学生小组化管理制度
- 学生餐资金管理制度
- 安全与文明管理制度
- 安全警示室管理制度
- 完善公司化管理制度
- 实操培训室管理制度
- 审计局考核管理制度
- 客运车联营管理制度
- 如皋护士招聘题目及答案
- 护理网格化管理制度
- 国家开放大学《中国法律史》期末机考题库
- 国家开放大学《管理学基础》期末机考题库
- 浙江省温州市乐清市2023-2024学年四年级下学期数学期末考试试卷(含答案)
- 2025中考英语书面表达终极押题(附范文)
- 2025年高考真题-数学(全国一卷) 无答案
- 2025《政务数据共享条例》解读课件
- 国开电大《公司金融》形考任务1234答案
- 江苏省镇江市江南中学2025届七下数学期末调研试题含解析
- 安徽省历年中考作文题与审题指导(2015-2024)
评论
0/150
提交评论