版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.奇函数的定义域为.若为偶函数,且,则()A. B. C. D.2.已知椭圆方程为x24+y225=1,将此椭圆绕y轴旋转一周所得的旋转体的体积为V1,满足y≥-5A.V2=C.V2=54V3.设实数满足约束条件,则的最大值为()A. B.1 C.6 D.94.对于命题“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四面体()A.各正三角形内的点B.各正三角形的中心C.各正三角形某高线上的点D.各正三角形各边的中点5.某面粉供应商所供应的某种袋装面粉质量服从正态分布(单位:)现抽取500袋样本,X表示抽取的面粉质量在的袋数,则X的数学期望约为()附:若,则,A.171 B.239 C.341 D.4776.从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为()A.90 B.60 C.120 D.1107.若函数在上可导,,则()A.2 B.4 C.-2 D.-48.已知函数,则的解集为()A. B. C. D.9.b是区间上的随机数,直线与圆有公共点的概率为A. B. C. D.10.在一组样本数据不全相等的散点图中,若所有样本点都在直线上,则这组样本数据的样本相关系数为()A.3 B.0 C. D.111.设集合A={1,2,3,4},B={﹣4,﹣3,1},则A∩B=()A.{1,﹣3} B.{1,﹣4} C.{3} D.{1}12.甲、乙两名运动员,在某项测试中的8次成绩如茎叶图所示,分别表示甲、乙两名运动员这项测试成绩的平均数,,分别表示甲、乙两名运动员这项测试成绩的标准差,则有()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的二项展开式中,若只有的系数最大,则__________.14.若,且,则称集合是“兄弟集合”,在集合中的所有非空子集中任选一个集合,则该集合是“兄弟集合”的概率是__________15.已知矩阵,则矩阵的逆矩阵为_________.16.随机变量,变量,是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的展开式中,所有项的二项式系数之和为128.(1)求展开式中的有理项;(2)求展开后所有项的系数的绝对值之和.18.(12分)已知正四棱柱的底面边长为2,.(1)求该四棱柱的侧面积与体积;(2)若为线段的中点,求与平面所成角的大小.19.(12分)已知a>0,设p:实数x满足x2-4ax+3a2<0,q(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.20.(12分)在二项式的展开式中,前三项系数的绝对值成等差数列.(1)求展开式中二项式系数最大的项;(2)求展开式中所有有理项的系数之和.21.(12分)在平面直角坐标系中,椭圆的焦距为2,且过点.(1)求椭圆的方程;(2)是上不同的三点,若直线与直线的斜率之积为,证明:两点的横坐标之和为常数.22.(10分)设分别为椭圆的左、右焦点,点为椭圆的左顶点,点为椭圆的上顶点,且.(1)若椭圆的离心率为,求椭圆的方程;(2)设为椭圆上一点,且在第一象限内,直线与轴相交于点,若以为直径的圆经过点,证明:点在直线上.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】是偶函数,关于对称,是奇函数。故选B。2、C【解析】
根据题意画出图形,分别求出椭圆绕y轴旋转一周所得的旋转体的体积为V1与满足y≥-50≤x≤2y≤52【详解】在同一平面直角坐标系中画出椭圆与旋转体如图,椭圆绕y轴旋转一周所得的旋转体为椭球,其体积为V1满足y≥-50≤x≤2y≤5其体积V2=π×2故选:C.【点睛】本题主要考查了旋转体的体积及学生的计算能力,属于中档题.3、D【解析】
作出不等式组表示的平面区域,作出目标函数对应的直线,结合图像求得结果【详解】解:画出实数满足约束条件表示的可行域,由得,则表示直线在轴上的截距,截距越大,越大,作出目标函数对应的直线由图可知将直线向上平移,经过点时,直线的截距最大,由,得点的坐标为所以的最大值为故选:D【点睛】此题考查画不等式组表示的平面区域,考查数形结合求函数的最值.4、B【解析】四面体的面可以与三角形的边类比,因此三边的中点也就类比成各三角形的中心,故选择B.5、B【解析】
先根据正态分布求得质量在的袋数的概率,再根据代数服从二项分布可得.【详解】,且,,,,而面粉质量在的袋数服从二项分布,即,则.故选:B【点睛】本题考查了二项分布,解题的关键是求出质量在的袋数的概率,属于基础题.6、D【解析】
用所有的选法共有减去没有任何一名女生入选的组队方案数,即得结果【详解】所有的选法共有种其中没有任何一名女生入选的组队方案数为:故至少有一名女生入选的组队方案数为故选【点睛】本题主要考的是排列,组合及简单计数问题,考查组合的运用,处理“至少有一名”类问题,宜选用间接法,是一道基础题。7、D【解析】由题设可得,令可得,所以,则,应选答案D.8、C【解析】
根据分段函数的表达式,讨论当和时,不等式的解,从而得到答案。【详解】因为,由,得:①或②;解①得;;解②得:;所以的解集为;故答案选C【点睛】本题考查指数不等式与对数不等式的解法,体现了分类讨论的数学思想,属于中档题。9、C【解析】
利用圆心到直线的距离小于等半径可求出满足条件的b,最后根据几何概型的概率公式可求出所求.【详解】解:b是区间上的随机数即,区间长度为,由直线与圆有公共点可得,,,区间长度为,直线与圆有公共点的概率,故选:C.【点睛】本题主要考查了直线与圆的位置关系,与长度有关的几何概型的求解.10、D【解析】
根据回归直线方程可得相关系数.【详解】根据回归直线方程是可得这两个变量是正相关,故这组样本数据的样本相关系数为正值,且所有样本点(xi,yi)(i=1,2,…,n)都在直线上,则有|r|=1,∴相关系数r=1.故选:D.【点睛】本题考查了由回归直线方程求相关系数,熟练掌握回归直线方程的回归系数的含义是解题的关键.11、D【解析】
利用集合的交集的运算,即可求解.【详解】由题意,集合,所以,故选D.【点睛】本题主要考查了集合交集的运算,其中解答中熟记集合的交集运算是解答的关键,着重考查了推理与运算能力,属于基础题.12、B【解析】
根据茎叶图看出两组数据,先求出两组数据的平均数,再求出两组数据的方差,比较两组数据的方差的大小就可以得到两组数据的标准差的大小.【详解】由茎叶图可看出甲的平均数是,乙的平均数是,两组数据的平均数相等.甲的方差是乙的方差是甲的标准差小于乙的标准差,故选B.【点睛】本题考查两组数据的平均数和方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而标准差反映波动的大小,波动越小数据越稳定.二、填空题:本题共4小题,每小题5分,共20分。13、10【解析】
根据二项式系数的性质可直接得出答案.【详解】根据二项式系数的性质,由于只有第项的二项式系数最大,故答案为10.【点睛】本题主要考查了二项式系数的性质,解决二项式系数的最值问题常利用结论:二项展开式中中间项的二项式系数最大,属于基础题.14、【解析】
首先确定非空子集的个数;根据“兄弟集合”的定义,可列举出所有“兄弟集合”,根据古典概型概率公式求得结果.【详解】集合的非空子集共有:个集合的非空子集中,为“兄弟集合”的有:,,,,,,,共个根据古典概型可知,所求概率本题正确结果:【点睛】本题考查古典概型概率问题的求解,关键是能够根据“兄弟集合”的定义确定符合题意的集合个数.15、【解析】分析:根据逆矩阵公式得结果.详解:因为的逆矩阵为,所以矩阵A的逆矩阵为点睛:求逆矩阵方法:(1)公式法:的逆矩阵为,(2)定义法:.16、40【解析】分析:先根据二项分布得,再根据,得详解:因为,所以,因为,所以点睛:二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,,(2)21【解析】分析:(1)根据题意,求的,写出二项展示的通项,即可得到展开式的有理项;(2)由题意,展开式中所有项的系数的绝对值之和,即为展开式中各项系数之和,即可求解.详解:根据题意,,(1)展开式的通项为.于是当时,对应项为有理项,即有理项为(2)展开式中所有项的系数的绝对值之和,即为展开式中各项系数之和,在中令x=1得展开式中所有项的系数和为(1+2)7=37=21.所以展开式中所有项的系数和为21.点睛:本题主要考查二项式定理的通项与系数,属于简单题,二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项式定理的应用.18、(1),(2)【解析】试题分析:⑴根据题意可得:在中,高∴⑵过作,垂足为,连结,则平面,∵平面,∴∴在中,就是与平面所成的角∵,∴,又是的中点,∴是的中位线,∴在中∴∴考点:线面角,棱柱的体积点评:解决的关键是对于几何体体积公式以及空间中线面角的求解的表示,属于基础题.19、(1)2<x<3;(2)4【解析】
(1)先解出命题p、q的不等式,由p∧q为真,得知命题p与q均为真命题,再将两个不等式对应的范围取交集可得出答案;(2)解出命题p中的不等式,由题中条件得知命题q中的不等式对应的集合是命题p中不等式对应集合的真子集,因此得出两个集合的包含关系,列不等式组解出实数a的取值范围。【详解】(1)由x2-4ax+3a2>0当a=1时,1<x<3,即p为真时,实数x的取值范围是1<x<3.由x-3<1,得2<x<4,即q为真时,实数x的取值范围是2<x<4因为p∧q为真,所以p真且q真,所以实数x的取值范围是2<x<3;(2)由x2-4ax+3a所以,p为真时实数x的取值范围是a<x<3a.因为p是q的必要不充分条件,所以a≤2且4≤3a所以实数a的取值范围为:43【点睛】本题考查第(1)问考查利用复合命题的真假求参数的取值范围,转化为两个命题为真假时参数取值范围的交集,第(2)问考查由命题的充分必要性求参数的取值范围,转化为集合的包含关系,考查转化与化归的数学思想的应用,属于中等题。20、(1)(2)-【解析】
(1)由二项式定理展开式中的通项公式求出前三项,由前三项系数的绝对值成等差数列列方程即可求得,问题得解.(2)由,对赋值,使得的指数为正数即可求得所有理项,问题得解.【详解】(1)由二项式定理得展开式中第项为,所以前三项的系数的绝对值分别为1,,,由题意可得,整理得,解得或(舍去),则展开式中二项式系数最大的项是第五项,(2)因为,若该项为有理项,则是整数,又因为,所以或或,所以所有有理项的系数之和为【点睛】本题主要考查了二项式定理及其展开式的通项公式,考查分析能力,转化能力及计算能力,属于基础题.21、(1)(2)见解析【解析】
(1)直接用待定系数法可得方程;(2)设三点坐标分别为,,,设出直线方程,联立椭圆,求证为常数即可.【详解】(1)由题意椭圆的焦距为2,且过点,所以,,解得,,所以椭圆的标准方程为(2)设三点坐标分别为,,,设直线斜率分别为,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职国际航运业务管理(航运业务操作)试题及答案
- 2025年高职航空机电设备维修(航空设备维护)试题及答案
- 2025年高职(食品生物技术)食品酶制剂应用专项测试试题及答案
- 2025年高职生态保护运营(运营技术)试题及答案
- 2025年大学戏剧影视表演(表演基础)试题及答案
- 2025年高职(智能制造装备技术)装备维护阶段测试题及答案
- 2025年高职(给排水工程技术专业)管道维修试题及答案
- 2025年大学休闲体育(康乐体育)试题及答案
- 2025年高职地理教育(地理教学设计)试题及答案
- 2025年高职(园林技术)绿化工程施工实训试题及答案
- 后切式背栓连接干挂石材幕墙施工方案
- 人教版数学四年级上册期末测试卷及答案 (共八套)-2
- 淮安市2022-2023学年七年级上学期期末道德与法治试题【带答案】
- 大转炉氧枪橡胶软管和金属软管性能比较
- 四川省内江市2023-2024学年高二上学期期末检测生物试题
- 02-废气收集系统-风管设计课件
- 2022ABBUMC100.3智能电机控制器
- 天津东疆我工作图0718
- GB/T 19367-2022人造板的尺寸测定
- 北京春季化学会考试卷及答案
- 数学建模插值与拟合
评论
0/150
提交评论