2022-2023学年天津南开中学滨海生态城学校数学高二下期末联考模拟试题含解析_第1页
2022-2023学年天津南开中学滨海生态城学校数学高二下期末联考模拟试题含解析_第2页
2022-2023学年天津南开中学滨海生态城学校数学高二下期末联考模拟试题含解析_第3页
2022-2023学年天津南开中学滨海生态城学校数学高二下期末联考模拟试题含解析_第4页
2022-2023学年天津南开中学滨海生态城学校数学高二下期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知6个高尔夫球中有2个不合格,每次任取1个,不放回地取两次.在第一次取到合格高尔夫球的条件下,第二次取到不合格高尔夫球的概率为()A. B. C. D.2.已知为虚数单位,则复数对应复平面上的点在第()象限.A.一 B.二 C.三 D.四3.是第四象限角,,则等于()A. B.C. D.4.设集合,则()A.[-4,-2] B.(-∞,1] C.[1,+∞) D.(-2,1]5.如图是函数的导函数的图象,则下面说法正确的是()A.在上是增函数B.在上是减函数C.当时,取极大值D.当时,取极大值6.如图,用6种不同的颜色把图中四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有()A.496种 B.480种 C.460种 D.400种7.设,,则()A. B.C. D.8.已知复数满足(其中为虚数单位),则的共轭复数()A. B. C. D.9.有位同学按照身高由低到高站成一列,现在需要在该队列中插入另外位同学,但是不能改变原来的位同学的顺序,则所有排列的种数为()A. B. C. D.10.执行下面的程序框图,若输出的结果为,则判断框中的条件是()A. B. C. D.11.从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:根据上表可得回归直线方程y=0.56x+a,据此模型预报身高为A.70.09kg B.70.12kg C.70.5512.在平面直角坐标系中,已知抛物线的焦点为,过点的直线与抛物线交于,两点,若,则的面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,AC与BD交于点E,AB∥CD,AC=3,AB=2CD=6,当tanA=2时,=_____.14.用反证法证明命题“如果,那么”时,应假设__________.15.________.16.已知向量.若与共线,则在方向上的投影为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(I)若,求实数的值;(Ⅱ)判断的奇偶性并证明;(Ⅲ)设函数,若在上没有零点,求的取值范围.18.(12分)设是数列的前项的和,,.(1)求数列的通项公式;(2)令,数列的前项和为,求使时的最小值.19.(12分)小陈同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,否则为.(1)求小陈同学三次投篮至少命中一次的概率;(2)记小陈同学三次投篮命中的次数为随机变量,求的概率分布及数学期望.20.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,满足(2b﹣c)cosA=acosC.(1)求角A;(2)若,b+c=5,求△ABC的面积.21.(12分)已知一次函数f(x)满足:f(1)=2,f(2x)=2f(x)-1.(1)求f(x)的解析式;(2)设,若|g(x)|-af(x)+a≥0,求实数a的取值范围.22.(10分)为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩、物理成绩进行分析.下面是该生7次考试的成绩.数学888311792108100112物理949110896104101106(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明;(2)已知该生的物理成绩与数学成绩是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议.参考公式:方差公式:,其中为样本平均数.,。

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

记事件第一次取到的是合格高尔夫球,事件第二次取到不合格高尔夫球,由题意可得事件发生所包含的基本事件数,事件发生所包含的基本事件数,然后即可求出答案.【详解】记事件第一次取到的是合格高尔夫球事件第二次取到不合格高尔夫球由题意可得事件发生所包含的基本事件数事件发生所包含的基本事件数所以故选:B【点睛】本题考查的是条件概率,较简单.2、D【解析】分析:首先化简所给的复数,然后确定复数所在的象限即可.详解:由题意可得:,则复数对应的点为,该点位于第四象限,即复数对应复平面上的点在第四象限.本题选择D选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.3、B【解析】

∵α是第四象限角,∴sinα<0.∵,∴sinα=,故选B.4、B【解析】分析:先解不等式得出集合B,再由集合的运算法则计算.详解:由题意,,∴.故选B.点睛:本题考查集合的运算,解题关键是确定集合的元素,要注意集合的代表元是什么,由代表元确定如何求集合中的元素.5、D【解析】分析:先由图象得出函数的单调性,再利用函数的单调性与导数的关系即可得出.详解:由图象可知上恒有,在上恒有,在上单调递增,在上单调递减则当时,取极大值故选:D.点睛:熟练掌握函数的单调性、极值与导数的关系是解题的关键,是一道基础题.6、B【解析】分析:本题是一个分类计数问题,只用三种颜色涂色时,有C63C31C21,用四种颜色涂色时,有C64C41C31A22种结果,根据分类计数原理得到结果.详解:由题意知本题是一个分类计数问题,只用三种颜色涂色时,有C63C31C21=120(种).用四种颜色涂色时,有C64C41C31A22=360(种).综上得不同的涂法共有480种.故选:C.点睛:本题考查分类计数问题,本题解题的关键是看出给图形涂色只有两种不同的情况,颜色的选择和颜色的排列比较简单.7、A【解析】

根据对数函数的单调性可得,,根据不等式的性质可知;通过比较与1的大小关系,即可判断,从而可选出正确答案.【详解】解:,,则,故选:A.【点睛】本题主要考查了对数的运算,对数函数的单调性.在比较对数的大小时,常常结合对数函数的单调性比较大小.对于,若,则(1)当时,;(2)当时,;(3)当时,;若,则(1)当时,;(2)当时,;(3)当时,.8、A【解析】

利用等式把复数z计算出来,然后计算z的共轭复数得到答案.【详解】,则.故选A【点睛】本题考查了复数的计算和共轭复数,意在考查学生对于复数的计算能力和共轭复数的概念,属于简单题.9、C【解析】

将问题转化为将这个同学中新插入的个同学重新排序,再利用排列数的定义可得出答案.【详解】问题等价于将这个同学中新插入的个同学重新排序,因此,所有排列的种数为,故选C.【点睛】本题考查排列问题,解题的关键就是将问题进行等价转化,考查转化与化归数学思想的应用,属于中等题.10、C【解析】

根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,即可得出答案.【详解】解:当时,不满足输出结果为,进行循环后,,;当时,不满足输出结果为,进行循环后,,;当时,不满足输出结果为,进行循环后,,;当时,不满足输出结果为,进行循环后,,;当时,不满足输出结果为,进行循环后,,;当时,满足输出结果为,故进行循环的条件,应为:.故选:C.【点睛】本题考查程序框图的应用,属于基础题.11、B【解析】试题分析:由上表知x=170,y=69,所以a=y=0.56×172-26.2=70.12,所以男生体重约为70.12kg考点:线性回归方程.12、C【解析】

设直线的方程为,与抛物线联立,设,由,所以,结合韦达定理可得,,由可得解.【详解】因为抛物线的焦点为所以,设直线的方程为,将代入,可得,设,则,,因为,所以,所以,,所以,即,所以,所以的面积,故选C.【点睛】本题主要考查了直线与抛物线的位置关系,考查了设而不求的思想,由转化为是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、12【解析】分析:根据余弦定理求出,再由余弦定理可得,根据平面向量的数量积公式求解即可.详解:由,可知,在中,,,,故答案为.点睛:本题主要考查平面向量数量积公式,余弦定理及特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.14、【解析】

由反证法的定义得应假设:【详解】由反证法的定义得应假设:故答案为:【点睛】本题主要考查反证法的证明过程,意在考查学生对该知识的理解掌握水平和分析推理能力.15、【解析】分析:根据,即可求出原函数,再根据定积分的计算法则计算即可.详解:,故答案为:.点睛:本题考查了定积分的计算,关键是求出原函数,属于基础题.16、【解析】

先根据与共线求出的值,再利用向量的投影公式求在方向上的投影.【详解】∵∴.又∵与共线,∴,∴,∴,∴在方向上的投影为.故答案为:【点睛】本题主要考查向量共线的坐标表示和向量的投影的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I);(Ⅱ)为奇函数,证明见解析;(Ⅲ).【解析】

(Ⅰ)利用代入原式即得答案;(Ⅱ)找出与的关系即可判断奇偶性;(Ⅲ)函数在上没有零点等价于方程在上无实数解,再设,求出最值即得答案.【详解】(Ⅰ)因为,即:,所以.(Ⅱ)函数为奇函数.令,解得,∴函数的定义域关于原点对称,又所以,为奇函数.(Ⅲ)由题意可知,,函数在上没有零点等价于方程在上无实数解,设,则,∴在上单调递减,在上单调递增,∴在上取得极小值,也是最小值,∴,∴的取值范围为.【点睛】本题主要考查函数的奇偶性,利用导函数计算函数最值,意在考查学生的转化能力,分析能力,计算能力,难度中等.18、(1);(2)3【解析】

(1)根据结合的递推关系可求解.

(2)由(1)可得,则,用裂项相消可求和,从而解决问题.【详解】解:(1)由两式相减得到,,;

当,也符合,综上,.(2)由得,,∴,∴,易证明在时单调递增,且,故的最小值为3.【点睛】本题考查根据的递推关系求数列的通项公式和用裂项相消法求和,属于中档题.19、(1);(2).【解析】分析:(1)先求小陈同学三次投篮都没有命中的概率,再用1减得结果,(2)先确定随机变量取法,再利用组合数求对应概率,列表得分布列,最后根据数学期望公式求结果.详解:(1)小陈同学三次投篮都没有命中的概率为(1-)×(1-)×(1-)=;所以小陈同学三次投篮至少命中一次的概率为1-=.(2)ξ可能的取值为0,1,2,1.P(ξ=0)=;P(ξ=1)=×(1-)×(1-)+(1-)××(1-)+(1-)×(1×)×=;P(ξ=2)=××+××+××=;P(ξ=1)=××=;故随机变量ξ的概率分布为ξ0121P所以数学期望E(ξ)=0×+1×+2×=+1×=.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合,枚举法,概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值.20、(1)A.(2).【解析】

(1)利用正弦定理完成边化角,再根据在三角形中有,完成化简并计算出的值;(2)利用的值以及余弦定理求解出的值,再由面积公式即可求解出△ABC的面积.【详解】(1)在三角形ABC中,∵(2b﹣c)cosA=acosC,由正弦定理得:(2sinB﹣sinC)cosA=sinAcosC,化为:2sinBcosA=sinCcosA+sinAcosC=sin(A+C)=sinB,sinB≠0,解得cosA,,∴A.(2)由余弦定理得a2=b2+c2﹣2bccosA,∵a,b+c=5,∴13=(b+c)2﹣3cb=52﹣3bc,化为bc=4,所以三角形ABC的面积SbcsinA4.【点睛】本题考查解三角形的综合运用,难度一般.(1)解三角形的问题中,求解角的大小时,要注意正、余弦定理的选择,同时注意使用正弦定理时要注意是否满足齐次的情况;(2)注意解三角形时的隐含条件的使用.21、(1)f(x)=x+1.(2)a≤0.【解析】分析:(1)待定系数法即可求得f(x)的解析式;(2)分类讨论、分离参数、数形结合都可以解决.详解:(1)设f(x)=kx+b,则解得:k=b=1,故f(x)=x+1.(2)由(1)得:g(x)=|g(x)|-af(x)+a≥0可化为|g(x)|≥ax.∵|g(x)|=∴由|g(x)|≥ax可分两种情况:(I)恒成立若x=0,不等式显然成立;若x<0时,不等式等价于x-2≤a.∵x-2<-2,∴a≥-2.(II)恒成立方法一[分离参数]:可化为a≤在(0,+∞)上恒成立。令h(x)=,则h′(x)==令t(x)=x-(x+1)ln(x+1),则由t′(x)=-ln(x+1)<0知t(x)在(0,+∞)上单调递减,故t(x)<

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论