2023届甘肃省示范名校高二数学第二学期期末联考试题含解析_第1页
2023届甘肃省示范名校高二数学第二学期期末联考试题含解析_第2页
2023届甘肃省示范名校高二数学第二学期期末联考试题含解析_第3页
2023届甘肃省示范名校高二数学第二学期期末联考试题含解析_第4页
2023届甘肃省示范名校高二数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.以下说法错误的是()A.命题“若,则”的逆否命题为“若,则”B.“”是“”的充分不必要条件C.若命题存在,使得,则:对任意,都有D.若且为假命题,则均为假命题2.已知三棱锥的体积为,,,,,且平面平面PBC,那么三棱锥外接球的体积为()A. B. C. D.3.某家具厂的原材料费支出x(单位:万元)与销售量y(单位:万元)之间有如下数据,根据表中提供的全部数据,用最小二乘法得出y与x的线性回归方程为,则为()x24568y2535605575A. B. C. D.54.已知命题“,使得”是真命题,则实数的取值范围是()A. B. C. D.5.把18个人平均分成两组,每组任意指定正副组长各1人,则甲被指定为正组长的概率为()A. B. C. D.6.设命题:,,则为()A., B.,C., D.,7.已知,是第四象限角,则()A. B. C. D.78.函数的图象在点处的切线方程是,若,则()A. B. C. D.9.已知集合,,则中元素的个数为()A.3 B.2 C.1 D.010.展开式中x2的系数为()A.15 B.60 C.120 D.24011.下列几种推理中是演绎推理的序号为()A.由,,,…猜想B.半径为的圆的面积,单位圆的面积C.猜想数列,,,…的通项为D.由平面直角坐标系中,圆的方程为推测空间直角坐标系中球的方程为12.已知函数,若对任意的恒成立,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在杨辉三角形中,每一行除首末两个数之外,其余每个数都等于它肩上的两数之和,若第行中的三个连续的数之比是2∶3∶4,则的值是_________.14.设函数,,对于任意的,不等式恒成立,则正实数的取值范围________15.命题“,”的否定为______.16.设Sn为等比数列{an}的前n项和,8a2+a5=0,则=________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)知函数,,与在交点处的切线相互垂直.(1)求的解析式;(2)已知,若函数有两个零点,求的取值范围.18.(12分)设函数().(Ⅰ)当时,求不等式的解集;(Ⅱ)求证:,并求等号成立的条件.19.(12分)在平面四边形中,、分、所成的比为,即,则有:.(1)拓展到空间,写出空间四边形类似的命题,并加以证明;(2)在长方体中,,,,、分别为、的中点,利用上述(1)的结论求线段的长度;(3)在所有棱长均为平行六面体中,(为锐角定值),、分、所成的比为,求的长度.(用,,表示)20.(12分)如图,在四棱锥中,平面平面,,,,,,.(1)求直线与平面所成角的正弦值.(2)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.21.(12分)(1)当时,求证:;(2)当时,恒成立,求实数的取值范围.22.(10分)已知函数,当时,函数有极大值8.(Ⅰ)求函数的解析式;(Ⅱ)若不等式在区间上恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

根据逆否命题定义、命题否定的定义分别判断出正确;解方程得到解集和的包含关系,结合充要条件的判定可知正确;根据复合命题的真假性可知错误,由此可得结果.【详解】选项:根据逆否命题的定义可知:原命题的逆否命题为“若,则”,可知正确;选项:由,解得,因此“”是“”的充分不必要,可知正确;选项:根据命题的否定可知对任意,都有,可知正确;选项:由且为假命题,则至少有一个为假命题,因此不正确.本题正确选项:【点睛】本题考查了简易逻辑的判定方法、方程的解法,考查了推理能力与计算能力,属于基础题.2、D【解析】试题分析:取中点,连接,由知,则,又平面平面,所以平面,设,则,又,则,,,,显然是其外接球球心,因此.故选D.考点:棱锥与外接球,体积.3、C【解析】

由给定的表格可知,,代入,可得.【详解】解:由给定的表格可知,,代入,可得.故选:.【点睛】本题考查线性回归方程,考查学生的计算能力,属于基础题.4、C【解析】

利用二次函数与二次不等式的关系,可得函数的判别式,从而得到.【详解】由题意知,二次函数的图象恒在轴上方,所以,解得:,故选C.【点睛】本题考查利用全称命题为真命题,求参数的取值范围,注意利用函数思想求解不等式.5、B【解析】

把18个人平均分成2组,再从每组里任意指定正、副组长各1人,即从9人中选一个正组长,甲被选定为正组长的概率,与组里每个人被选中的概率相等.【详解】由题意知,把18个人平均分成2组,再从每组里任意指定正、副组长各1人,即从9个人中选一个正组长,∴甲被选定为正组长的概率是.故选B.【点睛】本题考查了等可能事件的概率应用问题,是基础题目.6、D【解析】分析:直接利用特称命题的否定解答.详解:由特称命题的否定得为:,,故答案为:D.点睛:(1)本题主要考查特称命题的否定,意在考查学生对该知识的掌握水平.(2)特称命题,特称命题的否定.7、A【解析】

通过和差公式变形,然后可直接得到答案.【详解】根据题意,是第四象限角,故,而,故答案为A.【点睛】本题主要考查和差公式的运用,难度不大.8、D【解析】分析:先求出和,再求即得.详解:由题得因为函数的图象在点处的切线方程是,所以所以故答案为:D.点睛:(1)本题主要考查求导和导数的几何意义,意在考查学生对该知识的掌握水平.(2)函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是9、B【解析】试题分析:集合中的元素为点集,由题意,可知集合A表示以为圆心,为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,又圆与直线相交于两点,,则中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.10、B【解析】

∵展开式的通项为,令6-r=2得r=4,∴展开式中x2项为,所以其系数为60,故选B11、B【解析】

根据演绎推理、归纳推理和类比推理的概念可得答案.【详解】A.是由特殊到一般,是归纳推理.B.是由一般到特殊,是演绎推理.C.是由特殊到一般,是归纳推理.D.是由一类事物的特征,得到另一类事物的特征,是类比推理.故选:B【点睛】本题考查对推理类型的判断,属于基础题.12、B【解析】

对任意的,恒成立对任意的,恒成立,对任意的,恒成立,参变分离得到恒成立,再根据对勾函数的性质求出在上的最小值即可.【详解】解:对任意的,,即恒成立对任意的,恒成立,对任意的,恒成立,恒成立,又由对勾函数的性质可知在上单调递增,,,即.故选:.【点睛】本题考查了导数的应用,恒成立问题的基本处理方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先根据题意,设第行中从第项开始,连续的三个连续的数之比是2∶3∶4,得到,求解,即可得出结果.【详解】根据题意,可得第行的数分别为:,设第行中从第项开始,连续的三个连续的数之比是2∶3∶4,则有,即,即,解得:.故答案为:.【点睛】本题主要考查杨辉三角形的应用,以及组合数的性质及运算,熟记组合数的运算公式即可,属于常考题型.14、【解析】

先分析的单调性,然后判断的正负,再利用恒成立的条件确定的范围.【详解】,令,则,所以在单调递减,在单调递增,则;,令,则,所以在单调递增,在单调递减,则;当,所以不成立,故;因为恒成立,所以恒成立,所以,即,解得,即.【点睛】恒成立问题解题思路:当恒成立时,则;存在性问题解题思路:当存在满足时,则有.15、,【解析】

直接利用全称命题的否定是特称命题写出结果即可.【详解】解:因为全称命题的否定为特称命题,故命题“,”的否定为:“,”故答案为:,【点睛】本题考查命题的否定,特称命题与全称命题的关系,属于基础题.16、-11【解析】通过8a2+a5=0,设公比为q,将该式转化为8a2+a2q3=0,解得q=-2,所以===-11.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)或.【解析】分析:(1)分别求出与在交点处切线的斜率,从而得到答案;(2)对求导,分类讨论即可.详解:(1),,又,,与在交点处的切线相互垂直,,.又在上,,故.(2)由题知.①,即时,令,得;令,得或,在区间上单调递增,在区间上单调递减,在区间上单调递增,故存在使.又,,,在区间上有一个零点,在区间上有一个零点,在区间上有一个零点,共个零点,不符合题意,舍去.②时,令,得,令,得或,在区间上单调递增,在区间上单调递减,在区间上单调递增,又,,有两个零点,符合题意.③,即时,令,得,令,得或,在区间上单调递增,在区间上单调递减,在区间上单调递增,,在区间上存在一个零点,若要有两个零点,必有,解得.④,即时,令,得,令,得或,在区间上单调递增,在区间上单调递减,在区间上单调递增,,在区间上存在一个零点,又,∴在区间∴上不存在零点,即只有一个零点,不符合题意.综上所述,或.点睛:函数零点或函数图象交点问题的求解,一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.18、(Ⅰ)(Ⅱ)见证明【解析】

(Ⅰ)把代入不等式中,利用零点进行分类讨论,求解出不等式的解集;(Ⅱ)证法一:对函数解析式进行变形为,,显然当时,函数有最小值,最小值为,利用基本不等式,可以证明出,并能求出等号成立的条件;证法二:利用零点法把函数解析式写成分段函数形式,求出函数的单调性,最后求出函数的最小值,以及此时的的值.【详解】解:(Ⅰ)当时,原不等式等价于,当时,,解得当时,,解得当时,,无实数解原不等式的解集为(Ⅱ)证明:法一:,当且仅当时取等号又,当且仅当且时,即时取等号,,等号成立的条件是法二:在上单调递减,在上单调递增,等号成立的条件是【点睛】本题考查了绝对值不等式的解法以及证明绝对值不等式,利用零点法,分类讨论是解题的关键.19、(1)命题同题干,证明见解析;(2);(3)【解析】

(1)由条件可得,利用向量的线性运算证明即可;(2)由(1)的结论可得,两边同时平方计算可得结果;(3)由(1)的结论可得,两边同时平方计算可得结果.【详解】(1)在空间四边形中,、分、所成的比为,即,则有:.证明:;(2)由(1)的结论可得,,;(3)如图:与所成的角为,又由(1)的结论可得,,.【点睛】本题考查空间向量的线性运算,数量积的运算及模的运算,考查学生计算能力,是中档题.20、(Ⅰ);(Ⅱ).【解析】分析:(Ⅰ)取AD中点为O,连接CO,PO,由已知可得CO⊥AD,PO⊥AD.以O为坐标原点,建立空间直角坐标系,求得P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),进一步求出向量的坐标,再求出平面PCD的法向量,设PB与平面PCD的夹角为θ,由求得直线PB与平面PCD所成角的正弦值;(Ⅱ)假设存在M点使得BM∥平面PCD,设,M(0,y1,z1),由可得M(0,1﹣λ,λ),,由BM∥平面PCD,可得,由此列式求得当时,M点即为所求.详解:(1)取AD的中点O,连接PO,CO.因为PA=PD,所以PO⊥AD.又因为PO⊂平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO⊂平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.以O为坐标原点,建立空间直角坐标系如图:则P(0,0,1),B(1,1,0),D(0,﹣1,0),C(2,0,0),则,,设为平面PCD的法向量,则由,得,则.设PB与平面PCD的夹角为θ,则=;(2)假设存在M点使得BM∥平面PCD,设,M(0,y1,z1),由(Ⅱ)知,A(0,1,0),P(0,0,1),,B(1,1,0),,则有,可得M(0,1﹣λ,λ),∴,∵BM∥平面PCD,为平面PCD的法向量,∴,即,解得.综上,存在点M,即当时,M点即为所求.点睛:点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论