2022-2023学年陕西省西安市西工大附中高二数学第二学期期末达标检测模拟试题含解析_第1页
2022-2023学年陕西省西安市西工大附中高二数学第二学期期末达标检测模拟试题含解析_第2页
2022-2023学年陕西省西安市西工大附中高二数学第二学期期末达标检测模拟试题含解析_第3页
2022-2023学年陕西省西安市西工大附中高二数学第二学期期末达标检测模拟试题含解析_第4页
2022-2023学年陕西省西安市西工大附中高二数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,则().A. B. C. D.2.若随机变量服从正态分布,则()附:随机变量,则有如下数据:,,.A. B. C. D.3.已知函数,若有且仅有两个整数,使得,则的取值范围为()A. B. C. D.4.下列命题中:①“x>y”是“x②已知随机变量X服从正态分布N3,  ③线性回归直线方程y=bx+④命题“∃x∈R,x2+x+1>0其中正确的个数是()A.1 B.2 C.3 D.45.《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务必须排在前三位,且任务、必须排在一起,则这六项任务的不同安排方案共有()A.240种 B.188种 C.156种 D.120种6.双曲线的渐近线方程为,则其离心率为()A. B. C. D.7.将点的极坐标化成直角坐标是(

)A. B. C. D.8.为虚数单位,复数的共轭复数是()A. B. C. D.9.若函数的图象上存在关于直线对称的点,则实数的取值范围是()A. B. C. D.10.A. B. C. D.11.“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件12.()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数为偶函数,则.14.抛物线的准线方程为________.15.若,则____16.计算:_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列的前项和,其中为常数.(1)求;(2)设,求数列的前项和.18.(12分)已知函数,(其中,且),(1)若,求实数的值;(2)能否从(1)的结论中获得启示,猜想出一个一般性的结论并证明你的猜想.19.(12分)选修4-4:坐标系与参数方程在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)曲线与相交于两点,求过两点且面积最小的圆的标准方程.20.(12分)已知函数(a∈R).(1)讨论y=f(x)的单调性;(2)若函数f(x)有两个不同零点x1,x2,求实数a的范围并证明.21.(12分)把6本不同的书,全部分给甲,乙,丙三人,在下列不同情形下,各有多少种分法?(用数字作答)(Ⅰ)甲得2本;(Ⅱ)每人2本;(Ⅲ)有1人4本,其余两人各1本.22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出的普通方程和的直角坐标方程;(2)设点在上,点在上,求的最小值及此时的直角坐标.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:因为所以选C.考点:比较大小2、B【解析】

先将、用、表示,然后利用题中的概率求出的值.【详解】由题意可知,,则,,,因此,,故选B.【点睛】本题考查利用正态分布原则求概率,解题时要将相应的数用和加以表示,并利用正态曲线的对称性列式求解,考查计算能力,属于中等题.3、B【解析】分析:数,若有且仅有两个整数,使得,等价于有两个整数解,构造函数,利用导数判断函数的极值点在,由零点存在定理,列不等式组,从而可得结果..详解:因为所以函数,若有且仅有两个整数,使得,等价于有两个整数解,设,令,令恒成立,单调递减,又,存在,使递增,递减,若解集中的整数恰为个,则是解集中的个整数,故只需,故选B.点睛:本题主要考查不等式有解问题以及方程根的个数问题,属于难题.不等式有解问题不能只局限于判别式是否为正,不但可以利用一元二次方程根的分布解题,还可以转化为有解(即可)或转化为有解(即可),另外,也可以结合零点存在定理,列不等式(组)求解.4、B【解析】

①充要条件即等价条件,不等价则不充要;②根据正态分布的特征,且μ=3,得到P(X≤0)=P(X≥6)=1-P(X≤6),判断其正确;③根据回归直线的特征,得出其正确;④写出命题p的否定¬p,判定其错误;最后得出结果.【详解】对于①,由x>y≥0,可以推出x2>y2,充分性成立,x2对于②,根据题意得P(X≤0)=P(X≥6)=1-P(X≤6)=1-0.72=0.28,所以②正确;对于③,根据回归直线一定会过样本中心点,所以③正确;对于④,命题“∃x∈R,x2所以正确命题有两个,故选B.【点睛】该题考查的是有关判断命题的正误的问题,涉及到的知识点有充要条件,正态分布,含有一个量词的命题的否定,回归直线方程的特征,属于简单题目.5、D【解析】当E,F排在前三位时,=24,当E,F排后三位时,=72,当E,F排3,4位时,=24,N=120种,选D.6、B【解析】

根据渐近线得到,得到离心率.【详解】双曲线的渐近线方程为,则,,.故选:.【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力.7、A【解析】本题考查极坐标与直角坐标的互化由点M的极坐标,知极坐标与直角坐标的关系为,所以的直角坐标为即故正确答案为A8、B【解析】分析:直接利用复数的除法的运算法则化简求解即可.详解:则复数的共轭复数是.故选C.点睛:本题考查复数的除法的运算法则的应用,复数的基本概念,是基础题.9、D【解析】分析:设若函数的图象上存在关于直线对称的点,则函数与函数的图象有交点,即有解,利用导数法,可得实数a的取值范围.详解:由的反函数为,函数与的图象上存在关于直线对称的点,则函数与函数的图象有交点,即有解,即,令,则,当时,,在上单调递增,当时,可得求得的最小值为1.实数的取值范围是,故选:D.点睛:本题考查的知识点是函数图象的交点与方程根的关系,利用导数求函数的最值,难度中档.10、D【解析】分析:根据公式,可直接计算得详解:,故选D.点睛:复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错.11、A【解析】

首先解一元二次不等式,再根据集合的包含关系判断充分条件、必要条件;【详解】解:因为,所以或,即因为,所以“”是“”的充分不必要条件,故选:【点睛】本题考查一元二次不等式的解法,充分条件、必要条件的判定,属于基础题.12、C【解析】

根据定积分的运算公式,可以求接求解.【详解】解:,故选C.【点睛】本题考查了定积分的计算,熟练掌握常见被积函数的原函数是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】试题分析:由函数为偶函数函数为奇函数,.考点:函数的奇偶性.【方法点晴】本题考查导函数的奇偶性以及逻辑思维能力、等价转化能力、运算求解能力、特殊与一般思想、数形结合思想与转化思想,具有一定的综合性和灵活性,属于较难题型.首先利用转化思想,将函数为偶函数转化为函数为奇函数,然后再利用特殊与一般思想,取.14、【解析】

先将抛物线化为标准方程,进而可得出准线方程.【详解】因为抛物线的标准方程为:,因此其准线方程为:.故答案为:【点睛】本题主要考查抛物线的准线,熟记抛物线的标准方程即可,属于基础题型.15、4【解析】

去括号化简,令虚部为0,可得答案.【详解】,故答案为4.【点睛】本题主要考查了复数的乘法运算以及复数为实数的等价条件.16、【解析】

直接利用定积分公式计算即可。【详解】【点睛】本题主要考查了定积分计算,考查计算能力,属于基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)利用求出当时的通项,根据为等比数列得到的值后可得.(2)利用分组求和法可求的前项和.【详解】(1)因为,当时,,当时,,所以,因为数列是等比数列,所以对也成立,所以,即.(2)由(1)可得,因为,所以,所以,即.【点睛】(1)数列的通项与前项和的关系是,我们常利用这个关系式实现与之间的相互转化.(2)数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.18、(1)(2)猜想:;证明见解析【解析】

(1)分别代入并化简,可得,即可求出答案;(2)猜想:;分别代入表达式,化简并整理即可证明.【详解】解:(1).因为函数与具有相同的单调性,且都是单调函数,所以是单调函数..(2)由,猜想:.证明:.所以.【点睛】本题考查了归纳推理,考查了学生的推理能力,属于中档题.19、(1)曲线的普通方程为,的直角坐标方程为;(2)【解析】试题分析:(1)利用消参和极坐标公式,化参数方程和极坐标方程为普通方程;(2)直线和椭圆相交,联立求中点即为圆心,弦长即为直径,所以过两点且面积最小的圆的标准方程为.试题解析:(1)由消去参数,得,即曲线的普通方程为,由,得,即,即.即曲线的直角坐标方程为;(2)过两点且面积最小的圆是以线段为直径的圆,令.由,得,所以,所以圆心坐标为,又因为半径,所以过两点且面积最小的圆的标准方程为.20、(1)见解析;(2),证明见解析【解析】

(1)先求得函数的单调区间,然后求函数的导数,对分成两种情况,分类讨论函数的单调区间.(2)令,分离常数,构造函数,利用导数求得的单调区间和最大值,结合图像求得的取值范围.构造函数(),利用导数证得在成立,从而证得在上成立.根据的单调性证得.【详解】函数的定义域为当时,,函数在上为增函数;当时,,,有,在有,即,综上:当时,函数在上为增函数;当时,.(2)有两个不同的零点,即有两个不同的根,即即有两个不同的交点;,,,当时,故.由上设令()当时,,故在上为增函数,,从而有,即,而则,又因为所以,又,,故,即证.【点睛】本小题主要考查利用导数研究函数的单调区间和最值,考查利用导数研究零点问题,考查利用导数证明不等式,综合性很强,属于难题.21、(Ⅰ)240种(Ⅱ)90种(Ⅲ)90种【解析】

(Ⅰ)根据题意,分2步进行分析:①,在6本书中任选2本,分给甲,②,将剩下的4本分给乙、丙,由分步计数原理计算可得答案;(Ⅱ)根据题意,分2步进行分析:①,将6本书平均分成3组,②,将分好的3组全排列,分给甲乙丙三人,由分步计数原理计算可得答案;(Ⅲ)根据题意,分2步进行分析:①,在6本书中任选4本,分给三人中1人,②,将剩下的2本全排列,安排给剩下的2人,由分步计数原理计算可得答案;【详解】(Ⅰ)根据题意,分2步进行分析:①,在6本书中任选2本,分给甲,有C62=15种选法,②,将剩下的4本分给乙、丙,每本书都有2种分法,则有2×2×2×2=16种分法,则甲得2本的分法有15×16=240种;(Ⅱ)根据题意,分2步进行分析:①,将6本书平均分成3组,有15种分组方法,②,将分好的3组全排列,分给甲乙丙三人,有A33=6种情况,则有15×6=90种分法;(Ⅲ)根据题意,分2步进行分析:①,在6本书中任选4本,分给三人中1人,有C64×C31=45种分法,②,将剩下的2本全排列,安排给剩下的2人,有A22=2种情况,则有45×2=90种分法.【点睛】本题考查排列、组合的应用,考查了分组分配问题的步骤,涉及分类、分步计数原理的应用,属于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论