2022-2023学年黑龙江绥化一中数学高二下期末联考模拟试题含解析_第1页
2022-2023学年黑龙江绥化一中数学高二下期末联考模拟试题含解析_第2页
2022-2023学年黑龙江绥化一中数学高二下期末联考模拟试题含解析_第3页
2022-2023学年黑龙江绥化一中数学高二下期末联考模拟试题含解析_第4页
2022-2023学年黑龙江绥化一中数学高二下期末联考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,反设正确的是()A.假设三内角都不大于60° B.假设三内角都大于60°C.假设三内角至多有一个大于60° D.假设三内角至多有两个大于60°2.转化为弧度数为()A. B. C. D.3.圆锥底面半径为,高为,是一条母线,点是底面圆周上一点,则点到所在直线的距离的最大值是()A. B. C. D.4.一个几何体的三视图如图所示,则该几何体的体积为()A. B.8 C.6 D.5.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球数的标准差为0.3,下列说法中,正确的个数为()①甲队的进球技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1 B.2 C.3 D.46.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为A.5 B.2 C.3 D.27.已知两个正态分布密度函数的图象如图所示,则()A. B.C. D.8.设函数f(x)=-,[x]表示不超过x的最大整数,则函数y=[f(x)]的值域为()A.{0} B.{-1,0}C.{-1,0,1} D.{-2,0}9.已知数据,2的平均值为2,方差为1,则数据相对于原数据()A.一样稳定 B.变得比较稳定C.变得比较不稳定 D.稳定性不可以判断10.设随机变量,若,则()A. B. C. D.11.已知两个复数,的实部和虚部都是正整数,关于代数式有以下判断:①最大值为2;②无最大值;③最小值为;④无最小值.其中正确判断的序号是()A.①③ B.①④ C.②④ D.②③12.已知实数,满足条件,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.集合的所有子集个数为_________.14.已知三次函数的图象如图所示,则函数的解析式是_______.15.与2的大小关系为________.16.江湖传说,蜀中唐门配置的天下第一奇毒“含笑半步癫”是由种藏红花,种南海毒蛇和种西域毒草顺次添加炼制而成,其中藏红花添加顺序不能相邻,同时南海毒蛇的添加顺序也不能相邻,现要研究所有不同添加顺序对药效的影响,则总共要进行__________此实验.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,().(1)当时,求的单调区间;(2)设点,是函数图象的不同两点,其中,,是否存在实数,使得,且函数在点切线的斜率为,若存在,请求出的范围;若不存在,请说明理由.18.(12分)已知数列{an}的前n项和Sn满足:Sn=+-1,且an>0,n∈N*.(1)求a1,a2,a3,并猜想{an}的通项公式;(2)证明(1)中的猜想.19.(12分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),它与曲线C:(y-2)2-x2=1交于A、B两点.(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.20.(12分)已知数列满足,,.(1)求,,;(2)判断数列是否为等比数列,并说明理由.21.(12分)已知函数在处有极值.(1)求a,b的值;(2)求的单调区间.22.(10分)传说《西游记》中孙悟空的“如意金箍棒”原本是东海海底的一枚“定海神针”.作为兵器,“如意金箍棒”威力巨大,且只有孙悟空能让其大小随意变化。假定孙悟空在使用“如意金箍棒”与各路妖怪打斗时,都将其变化为底面半径为4至10之间的圆柱体。现假定孙悟空刚与一妖怪打斗完毕,并降伏了此妖怪,此时“如意金箍棒”的底面半径为10,长度为.在此基础上,孙悟空使“如意金箍棒”的底面半径以每秒1匀速缩短,同时长度以每秒40匀速增长,且在这一变化过程中,当“如意金箍棒”的底面半径为8时,其体积最大.(1)求在这一变化过程中,“如意金箍棒”的体积随时间(秒)变化的解析式,并求出其定义域;(2)假设在这一变化过程中,孙悟空在“如意金箍棒”体积最小时,将其定型,准备迎战下一个妖怪。求此时“如意金箍棒”的底面半径。

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

“至少有一个”的否定变换为“一个都没有”,即可求出结论.【详解】“三角形的内角中至少有一个不大于60°”时,反设是假设三内角都大于.故选:B.【点睛】本题考查反证法的概念,注意逻辑用语的否定,属于基础题.2、D【解析】已知180°对应弧度,则转化为弧度数为.本题选择D选项.3、C【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解的位置,推出结果即可.详解:圆锥底面半径为,高为2,是一条母线,点是底面圆周上一点,在底面的射影为;,,过的轴截面如图:,过作于,则,在底面圆周,选择,使得,则到的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.4、A【解析】分析:由三视图可知,该几何体是一个四棱锥,它的底面是一个长宽分别为的矩形,棱锥的高为,利用棱锥的体积公式可得结果.详解:根据三视图知:由三视图可知,该几何体是一个四棱锥,它的底面是个长宽分别为的矩形,棱锥的高为,,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.5、D【解析】分析:根据甲队比乙队平均每场进球个数多,得到甲对的技术比乙队好判断①;根据两个队的标准差比较,可判断甲队不如乙队稳定;由平均数与标准差进一步可知乙队几乎每场都进球,甲队的表现时好时坏.详解:因为甲队每场进球数为,乙队平均每场进球数为,甲队平均数大于乙队较多,所以甲队技术比乙队好,所以①正确;因为甲队全年比赛进球个数的标准差为,乙队全年进球数的标准差为,乙队的标准差小于甲队,所以乙队比甲队稳定,所以②正确;因为乙队的标准差为,说明每次进球数接近平均值,乙队几乎每场都进球,甲队标准差为,说明甲队表现时好时坏,所以③④正确,故选D.点睛:本题考查了数据的平均数、方差与标准差,其中数据的平均数反映了数据的平均水平,方差与标准差反映了数据的稳定程度,一般从这两个方面对数据作出相应的估计,属于基础题.6、D【解析】

利用点到直线的距离公式求出|PF2|cos∠POF2=ac,由诱导公式得出cos∠POF1=-ac,在【详解】如下图所示,双曲线C的右焦点F2(c,0),渐近线l1由点到直线的距离公式可得|PF由勾股定理得|OP|=|O在RtΔPOF2中,∠OPF在ΔPOF2中,|OP|=a,|PFcos∠PO由余弦定理得cos∠POF1即c=2a,因此,双曲线C的离心率为e=c【点睛】本题考查双曲线离心率的求解,属于中等题。求离心率是圆锥曲线一类常考题,也是一个重点、难点问题,求解椭圆或双曲线的离心率,一般有以下几种方法:①直接求出a、c,可计算出离心率;②构造a、c的齐次方程,求出离心率;③利用离心率的定义以及椭圆、双曲线的定义来求解。7、A【解析】

正态曲线关于对称,且越大图象越靠近右边,第一个曲线的均值比第二个图象的均值小,又有越小图象越瘦高,得到正确的结果.【详解】正态曲线是关于对称,且在处取得峰值,由图易得,故的图象更“瘦高”,的图象更“矮胖”,则.故选A.【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和形状的影响,是一个基础题.8、B【解析】

依题意,由于,所以.当时,,当时,,故的值域为.故选B.【点睛】本小题主要考查指数函数的值域,考查新定义函数的意义,考查了分类讨论的数学思想方法.属于中档题.9、C【解析】

根据均值定义列式计算可得的和,从而得它们的均值,再由方差公式可得,从而得方差.然后判断.【详解】由题可得:平均值为2,由,,所以变得不稳定.故选:C.【点睛】本题考查均值与方差的计算公式,考查方差的含义.属于基础题.10、B【解析】

根据,可以求出的值,利用二项分布的方差公式直接求出的值.【详解】解:,解得,,故选B.【点睛】本题考查了二项分布的方差公式,考查了数学运算能力.11、C【解析】

设两个复数,,在复平面内对应点,利用平面向量的加法的几何意义以及平面向量的数量积可以判断出的最值情况.【详解】设两个复数,,在复平面内对应点,因此有:因为,复数,的实部和虚部都是正整数,所以,(当且仅当),故,假设有最小值,则,显然对于也成立,于是有这与相矛盾,故不存在最小值;对任意正整数,,,,故没有最大值,因此②④说法正确.故选:C【点睛】本题考查了复数的向量表示,考查了平面向量的数量积的计算,考查了数学运算能力.12、A【解析】

作出不等式组对应的平面区域,利用目标函数的几何意义,进行平移,结合图象得到的取值范围.【详解】解:由得,作出实数,满足条件对应的平面区域,如下图所示:平移直线,由图象可知当直线经过点时,值最小.由,解得,,由,解得,..故选:A.【点睛】本题考查线性规划的基本应用,利用数形结合的方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】试题分析:∵集合有3个元素,∴集合的所有子集个数为考点:本题考查了子集的个数点评:解决此类问题常常用到:若集合有n个元素,则该集合的所有子集个数为14、【解析】

待定系数法:设,利用图象上点坐标代入,与联立求解可得.【详解】设,由题知:,由图象知解得故答案为:【点睛】求函数解析式的四种方法:配凑法、换元法、待定系数法、解方程组法,解题时根据具体条件对应方法求解析式.15、>【解析】

平方作差即可得出.【详解】解:∵=13+2(13+4)0,∴2,故答案为:>.【点睛】本题考查了平方作差比较两个数的大小关系,考查了推理能力与计算能力,属于基础题.16、.【解析】分析:先不考虑蛇共有种排法,再减去蛇相邻的情况,即可得出结论.详解:先不考虑蛇,先排蛇与毒草有种,再排藏红花有种,共有种,其中蛇相邻的排法共有种,,故答案为.点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为:(1)相邻问题采取“捆绑法”;(2)不相邻问题采取“插空法”;(3)有限制元素采取“优先法”;(4)特殊顺序问题,先让所有元素全排列,然后除以有限制元素的全排列数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的增区间为,减区间为;(2)存在实数取值范围是.【解析】

(1)分别研究,两种情况,先对函数求导,利用导数的方法判断其单调性,即可得出结果;(2)先由题意,得到,再根据,得到,得出,再由导数的几何意义,结合题中条件,得到,构造函数,用导数的方法研究函数的单调性,进而可得出结果.【详解】(1)当时,,令得,令得.当时,,所以在上是增函数。所以当时,的增区间为,减区间为;(2)由题意可得:,,所以,,令,则在单调递增,单调递减,,当时,,所以存在实数取值范围是.【点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究单调性,最值等,属于常考题型.18、(1)a1=-1;a2=-;a3=-;猜想an=-(n∈N*)(2)证明见解析【解析】

(1)分别令n=1、2,通过解一元二次方程结合已知的递推公式可以求出a1,a2,同理求出a3,根据它们的值的特征猜想{an}的通项公式;(2)利用数学归纳法,通过解一元二次方程可以证明即可.【详解】(1)当n=1时,由已知得a1=+-1,即∴当n=2时,由已知得a1+a2=+-1,将a1=-1代入并整理得+2a2-2=0.∴a2=-(a2>0).同理可得a3=-.猜想an=-(n∈N*).(2)【证明】①由(1)知,当n=1,2,3时,通项公式成立.②假设当n=k(k≥3,k∈N*)时,通项公式成立,即ak=-.由于ak+1=Sk+1-Sk=+--,将ak=-代入上式,整理得+2ak+1-2=0,∴ak+1=-,即n=k+1时通项公式成立.根据①②可知,对所有n∈N*,an=-成立.【点睛】本题考查了通过数列前几项的值,猜想数列的通项公式,并用数学归纳法证明猜想,属于基础题.19、(1);(2)【解析】试题分析:(1)直线的参数方程是标准参数方程,因此可把直线参数方程代入曲线的方程,由利用韦达定理可得;(2)把点极坐标化为直角坐标,知为直线参数方程的定点,因此利用参数的几何意义可得.试题解析:(1)把直线的参数方程对应的坐标代入曲线方程并化简得7t2+60t﹣125=0设A,B对应的参数分别为t1,t2,则.∴.(2)由P的极坐标为,可得,.∴点P在平面直角坐标系下的坐标为(﹣2,2),根据中点坐标的性质可得AB中点M对应的参数为.∴由t的几何意义可得点P到M的距离为.点睛:过点,倾斜角为的直线的标准参数方程为参数),其中直线上任一点参数的参数具有几何意义:,且方向向上时,为正,方向向下时,为负.20、(1),,.(2)是首项为,公比为的等比数列;理由见解析.【解析】分析:(1)先根据递推关系式求,,;,再求,,;(2)根据等比数列定义证明为等比数列.详解:(1)由条件可得:,将代入,得,而,∴,将代入,得,∴,∴,,.(2)是首项为2,公比为3的等比数列.由条件可得:,即,又,∴是首项为2,公比为3的等比数列.点睛:证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择、填空题中的判定;若证明某数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论