版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列中,,(),那么()A.1 B.-2 C.3 D.-32.已知双曲线的离心率为,则此双曲线的渐近线方程为A. B. C. D.3.已知自然数,则等于()A. B. C. D.4.某个几何体的三视图如图所示(其中正视图中的圆弧是半径为2的半圆),则该几何体的体积为()A. B.C. D.5.下列命题错误的是()A.命题“若,则”的逆否命题为“若,则”B.若为假命题,则均为假命题C.对于命题:,使得,则:,均有D.“”是“”的充分不必要条件6.函数是()A.偶函数且最小正周期为2 B.奇函数且最小正周期为2C.偶函数且最小正周期为 D.奇函数且最小正周期为7.已知双曲线:与双曲线:,给出下列说法,其中错误的是()A.它们的焦距相等 B.它们的焦点在同一个圆上C.它们的渐近线方程相同 D.它们的离心率相等8.化简的结果是()A. B. C. D.9.设是虚数单位,则复数的虚部等于()A. B. C. D.10.已知,,的实部与虚部相等,则()A.2 B. C.2 D.11.是()A.最小正周期为的偶函数 B.最小正周期为的奇函数C.最小正周期为的偶函数 D.最小正周期为的奇函数12.已知命题p:∀x∈R,2x>0;q:∃x0∈R,x+x0=-1.则下列命题为真命题的是()A.p∧q B.(┐p)∧(┐q) C.(┐p)∧q D.p∧(┐q)二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若函数恰有4个不同的零点,则的取值范围为_______.14.已知函数则_______.15.若表示的动点的轨迹是椭圆,则的取值范围是________.16.的展开式中,的系数为__________(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了研究广大市民对共享单车的使用情况,某公司在我市随机抽取了111名用户进行调查,得到如下数据:每周使用次数1次2次3次4次5次6次及以上男4337831女6544621合计1187111451认为每周使用超过3次的用户为“喜欢骑共享单车”.(1)分别估算男、女“喜欢骑共享单车”的概率;(2)请完成下面的2×2列联表,并判断能否有95%把握,认为是否“喜欢骑共享单车”与性别有关.不喜欢骑共享单车喜欢骑共享单车合计男女合计附表及公式:k2=nP(1.151.111.151.1251.1111.1151.111k2.1722.7163.8415.1246.6357.87911.82818.(12分)已知.(1)若,求函数的单调递增区间;(2)若,且函数在区间上单调递减,求的值.19.(12分)椭圆的左右焦点分别为,与轴正半轴交于点,若为等腰直角三角形,且直线被圆所截得的弦长为2.(1)求椭圆的方程;(2)直线:与椭圆交于点,线段的中点为,射线与椭圆交于点,点为的重心,求证:的面积为定值.20.(12分)已知.(1)当,时,求不等式的解集;(2)当,时,的图象与x轴围成的三角形面积大于24,求的取值范围.21.(12分)已知函数f(x)=x3+ax2(1)求函数f(x)的解析式及单调区间;(2)求函数f(x)在区间-3,2的最大值与最小值.22.(10分)已知复数满足(为虚数单位),,求一个以为根的实系数一元二次方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】∵,∴,即,∴,∴,∴是以6为周期的周期数列.∵2019=336×6+3,∴.故选B.2、C【解析】试题分析:因为双曲线的离心率为,所以,又因为双曲线中,所以,而焦点在轴上的双曲线的渐近线方程为,所以此双曲线的渐近线方程为,故选C.考点:1、双曲线的离心率;2、双曲线渐近方程.3、D【解析】分析:直接利用排列数计算公式即可得到答案.详解:.故选:D.点睛:合理利用排列数计算公式是解题的关键.4、A【解析】
试题分析:由三视图可知该几何体的体积等于长方体体积和半个圆柱体积之和,.考点:三视图与体积.5、B【解析】
由原命题与逆否命题的关系即可判断A;由复合命题的真值表即可判断B;由特称命题的否定是全称命题即可判断C;根据充分必要条件的定义即可判断D;.【详解】A.命题:“若p则q”的逆否命题为:“若¬q则¬p”,故A正确;B.若p∧q为假命题,则p,q中至少有一个为假命题,故B错.C.由含有一个量词的命题的否定形式得,命题p:∃x∈R,使得x2+x+1<0,则¬p为:∀x∈R,均有x2+x+1≥0,故C正确;D.由x2﹣3x+2>0解得,x>2或x<1,故x>2可推出x2﹣3x+2>0,但x2﹣3x+2>0推不出x>2,故“x>2”是“x2﹣3x+2>0”的充分不必要条件,即D正确故选:B.【点睛】本题考查简易逻辑的基础知识:四种命题及关系,充分必要条件的定义,复合命题的真假和含有一个量词的命题的否定,这里要区别否命题的形式,本题是一道基础题.6、C【解析】
首先化简为,再求函数的性质.【详解】,是偶函数,故选C.【点睛】本题考查了三角函数的基本性质,属于简单题型.7、D【解析】由题知.则两双曲线的焦距相等且,焦点都在圆的圆上,其实为圆与坐标轴交点.渐近线方程都为,由于实轴长度不同故离心率不同.故本题答案选,8、A【解析】
根据平面向量加法及数乘的几何意义,即可求解,得到答案.【详解】根据平面向量加法及数乘的几何意义,可得,故选A.【点睛】本题主要考查了平面向量的加法法则的应用,其中解答中熟记平面向量的加法法则是解答的关键,着重考查了推理与运算能力,属于基础题.9、D【解析】分析:对所给的复数分子、分母同乘以,利用进行化简,整理出实部和虚部即可.详解:∵∴复数的虚部为故选D.点睛:本题考查两个复数代数形式的乘除法,虚数单位的幂运算性质,两个复数相除时,一般需要分子和分母同时除以分母的共轭复数,再进行化简求值.10、C【解析】
利用待定系数法设复数z,再运用复数的相等求得b.【详解】设(),则即.故选C.【点睛】本题考查用待定系数法,借助复数相等建立等量关系,是基础题.11、D【解析】
整理,即可判断选项.【详解】由题,因为,所以该函数是奇函数,周期为,故选:D【点睛】本题考查三角函数的奇偶性和周期性的判定,考查正弦的二倍角公式的应用.12、D【解析】分析:分别判断p,q的真假即可.详解:指数函数的值域为(0,+∞),对任意x∈R,y=2x>0恒成立,故p为真命题;x2+x+1=2+>0恒成立,不存在x0∈R,使x+x0=-1成立,故q为假命题,则p∧q,┐p为假命题,┐q为真命题,┐p∧┐q,┐p∧q为假命题,p∧┐q为真命题.故选:D.点睛:本题以命题的真假判断与应用为载体,考查了指数函数的性质与二次函数方面的知识.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
若函数恰有4个不同的零点,令,即,讨论或,由求得,结合图象进而得到答案.【详解】函数,当时,的导数为,所以在时恒成立,所以在上单调递减,可令,再令,即有,当时,,只有,只有两解;当时,有两解,可得或,由和各有两解,共4解,有,解得,可得的范围是:,故答案是:.【点睛】该题考查的是有关根据函数零点个数确定参数的取值范围的问题,涉及到的知识点有画函数的图象,研究函数的单调性,分类讨论的思想,属于较难题目.14、6【解析】
根据分段函数的分段定义域分析代入直至算出具体函数值即可.【详解】由题意知.故答案为6【点睛】本题主要考查分段函数求值的问题,属于基础题型.15、【解析】
根据复数几何意义以及椭圆定义列关于的条件,再解不等式得的取值范围.【详解】因为表示的动点的轨迹是椭圆,所以复数所对应点距离小于4,即故答案为:【点睛】本题考查复数几何意义以及椭圆定义,考查综合分析求解能力,属中档题.16、【解析】.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)男用户中“喜欢骑共享单车”的概率的估计值为911,女用户中“喜欢骑共享单车”的概率的估计值为23(2)填表见解析,没有【解析】
(1)利用古典概型的概率估算男、女“喜欢骑共享单车”的概率;(2)先完成2×2列联表,再利用独立性检验判断能否有95%把握,认为是否“喜欢骑共享单车”与性别有关.【详解】解:(1)由调查数据可知,男用户中“喜欢骑共享单车”的比率为4555因此男用户中“喜欢骑共享单车”的概率的估计值为911女用户中“喜欢骑共享单车”的比率为3045因此女用户中“喜欢骑共享单车”的概率的估计值为23(2)由图中表格可得2×2列联表如下:不喜欢骑共享单车喜欢骑共享单车合计男114555女153145合计2575111将2×2列联表代入公式计算得:K所以没有95%的把握认为是否“喜欢骑共享单车”与性别有关.【点睛】本题主要考查古典概型的概率的计算,考查独立性检验,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1)单调递增区间为(2)【解析】
(1)求导分析函数单调性即可.(2)由题可知在区间上恒成立可得,即可得再结合即可.【详解】解:(1)由,得函数的单调递增区间为.(2)若函数在区间上单调递减,则,则,因为,所以,又,所以.【点睛】本题主要考查了利用导数求解函数的单调区间问题,同时也考查了利用函数的单调区间求解参数范围的问题,需要利用恒成立问题求最值,属于基础题.19、(1);(2)【解析】分析:(1)由等腰直角三角形的性质分析可得,又由直线与圆的位置关系可得的值,进而可得的值,将的值代入椭圆的方程即可得结论;(2)根据题意,分、两种情况讨论,若直线的斜率不存在,容易求出的面积,若直线的斜率存在,设直线的方程为,设,联立直线与椭圆的方程,结合一元二次方程中根与系数的关系,求出的面积消去参数,综合两种情况可得结论.详解:(1)由为等腰直角三角形可得,直线:被圆圆所截得的弦长为2,所以,所以椭圆的方程为.(2)若直线的斜率不存在,则.若直线的斜率存在,设直线的方程为,设,即,则,,,由题意点为重心,设,则,所以,,代入椭圆,得,整理得,设坐标原点到直线的距离为,则的面积.综上可得的面积为定值.点睛:本题主要考查待定待定系数法求抛物线及椭圆标准方程、圆锥曲线的定值问题以及点在曲线上问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.20、(1);(2).【解析】分析:(1)将代入函数解析式,利用零点分段法,将绝对值不等式转化为若干个不等式组,最后求并集得到原不等式的解集;(2)结合的条件,将函数解析式化简,化为分段函数的形式,求得相关点的坐标,利用面积公式,得到参数所满足的不等关系式,从而求得结果.详解:(1)当时,.不等式等价于或或解得或,即.所以不等式的解集是.(2)由题设可得,所以函数的图象与轴围成的三角形的三个顶点分别为,,.所以三角形的面积为.由题设知,解得.点睛:该题考查的是有关绝对值不等式的问题,一是需要明确采用零点分段法求解绝对值不等式,二是会应用题的条件,寻找参数所满足的对应的式子,最后求解即可得结果.21、(1)f(x)=x3+94x2-3x;f(x)单调增区间是-∞,-2,【解析】
(1)由题得f'-2=0f'12=0即a=【详解】(1)因为f(x)=x3+a由f'-2∴fxf'x令f'x>0⇒x>12或所以单调增区间是-∞,-2,12(2)由(1)可知,x-3,-2-2-2,11f'+0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版家电产品消费者满意度调查服务合同2篇
- 二零二五版房地产融资居间代理合同范本3篇
- 二零二五年电影联合制作与市场推广合同2篇
- 二零二五版茶叶茶具专卖店加盟管理合同3篇
- 二零二五版汽车购置贷款保证担保合同3篇
- 二零二五年度化肥原料进口与分销合同3篇
- 二零二五年度航空航天股权买卖合同范本3篇
- 二零二五版户外广告牌定期检查与维修合同3篇
- 二零二五年度驾校车辆购置税承包合同3篇
- 国际贸易第六章出口合同订立2025年绿色贸易标准与认证3篇
- 15.5-博物馆管理法律制度(政策与法律法规-第五版)
- 水泥厂钢结构安装工程施工方案
- 2023光明小升初(语文)试卷
- 三年级上册科学说课课件-1.5 水能溶解多少物质|教科版
- GB/T 7588.2-2020电梯制造与安装安全规范第2部分:电梯部件的设计原则、计算和检验
- GB/T 14600-2009电子工业用气体氧化亚氮
- 小学道德与法治学科高级(一级)教师职称考试试题(有答案)
- 河北省承德市各县区乡镇行政村村庄村名居民村民委员会明细
- 实用性阅读与交流任务群设计思路与教学建议
- 应急柜检查表
- 通风设施标准
评论
0/150
提交评论