版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列0,,,,…的一个通项公式是()A. B.C. D.2.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.33.为了考察两个变量x和y之间的线性相关性,甲、乙两个同学各自独立做了15次和20次试验,并且利用线性回归方法,求得回归直线为l1和l2,已知在两人的试验中发现对变量x的观测数据的平均值恰好相等,都为s,对变量y的观测数据的平均值也恰好相等,都为t,那么下列说法正确的是()A.直线l1和直线l2有交点(s,t) B.直线l1和直线l2相交,但交点未必是点(s,t)C.直线l1和直线l2必定重合 D.直线l1和直线l2由于斜率相等,所以必定平行4.等差数列的前项和是,且,,则()A.39 B.91 C.48 D.515.已知函数在区间上是增函数,则实数的取值范围是()A. B. C. D.6.若的展开式的各项系数和为32,则实数a的值为()A.-2 B.2 C.-1 D.17.椭圆C:x24+y23=1的左右顶点分别为AA.[12,34]8.已知椭圆与双曲线有相同的焦点,点是曲线与的一个公共点,,分别是和的离心率,若,则的最小值为()A. B.4 C. D.99.中国古代数学名著《九章算术•商功》中记载了一种名为“堑堵”的几何体:“邪解立方得二堑堵邪解堑堵”錾堵是一个长方体沿不在同一表面上的相对两棱斜截所得的立体图形其正视图和俯视图(直角三角形)如图所示,则该“堑堵”的外接球的大圆面积为()A. B. C. D.10.已知函数的导函数为,且满足关系式,则的值等于()A. B. C. D.11.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有()种.A.36 B.30 C.12 D.612.已知直线倾斜角是,在轴上截距是,则直线的参数方程可以是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将一颗骰子抛掷两次,用表示向上点数之和,则的概率为______.14.已知复数是纯虚数,则实数_________.15.下表提供了某学生做题数量x(道)与做题时间y(分钟)的几组对应数据:x(道)3456y(分钟)2.5t44.5根据上表提供的数据,得y关于x的线性回归方程为则表中t的值为_____.16.在大小相同的6个球中,2个是红球,4个是白球.若从中任意选取3个,则所选的3个球中至少有1个红球的概率是________.(结果用分数表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数,),已知直线的方程为.(1)设是曲线上的一个动点,当时,求点到直线的距离的最小值;(2)若曲线上的所有点均在直线的右下方,求的取值范围.18.(12分)设复数(其中),.(Ⅰ)若是实数,求的值;(Ⅱ)若是纯虚数,求.19.(12分)某羽绒服卖场为了解气温对营业额的影响,随机记录了该店3月份上旬中某5天的日营业额y(单元:千元)与该地当日最低气温x(单位:∘C)的数据,如表:x258911y1210887(1)求y关于x的回归直线方程;(2)设该地3月份的日最低气温,其中μ近似为样本平均数,近似为样本方差,求参考公式:,计算参考值:..20.(12分)在数列中,,,其中实数.(1)求,并由此归纳出的通项公式;(2)用数学归纳法证明(Ⅰ)的结论.21.(12分)证明下列不等式:(1)用分析法证明:;(2)已知是正实数,且.求证:.22.(10分)如图,平面,在中,,,交于点,,,,.(1)证明:;(2)求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】在四个选项中代n=2,选项B,D是正数,不符,A选项值为,符合,C选项值为,不符.所以选A.【点睛】对于选择题的选项是关于n的关系式,可以考虑通过赋特殊值检验法,来减少运算,或排除选项.2、D【解析】D试题分析:根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.解:,∴y′(0)=a﹣1=2,∴a=1.故答案选D.考点:利用导数研究曲线上某点切线方程.3、A【解析】
根据回归直线过样本数据中心点,并结合回归直线的斜率来进行判断。【详解】由于回归直线必过样本的数据中心点,则回归直线和回归直线都过点,做了两次试验,两条回归直线的斜率没有必然的联系,若斜率不相等,则两回归直线必交于点,若斜率相等,则两回归直线重合,所以,A选项正确,B、C、D选项错误,故选:A.【点睛】本题考查回归直线的性质,考查“回归直线过样本数据的中心点”这个结论,同时也要抓住回归直线的斜率来理解,考查分析理解能力,属于基础题。4、B【解析】解:由题意结合等差数列的通项公式有:,解得:,数列的前13项和:.本题选择B选项.5、D【解析】分析:求出导函数,利用函数的单调性,推出不等式,利用基本不等式求解函数的最值,推出结果即可.详解:函数,可得f′(x)=x2﹣mx+1,函数在区间[1,2]上是增函数,可得x2﹣mx+1≥0,在区间[1,2]上恒成立,可得m≤x+,x+≥2=1,当且仅当x=2,时取等号、可得m≤1.故选:D.点睛:本题考查函数的导数的应用,考查最值的求法,基本不等式的应用,考查转化思想以及计算能力.函数在一个区间上单调递增,则函数的导函数大于等于0恒成立,函数在一个区间上存在单调增区间,则函数的导函数在这个区间上大于0有解.6、D【解析】
根据题意,用赋值法,在中,令可得,解可得a的值,即可得答案.【详解】根据题意,的展开式的各项系数和为32,令可得:,解可得:,故选:D.【点睛】本题考查二项式定理的应用,注意特殊值的应用.7、B【解析】设P点坐标为(x0,y0),则于是kPA1∵kPA2【考点定位】直线与椭圆的位置关系8、A【解析】
题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,令P在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出a12+a22=2c2,由此能求出4e12+e22的最小值.【详解】由题意设焦距为2c,椭圆长轴长为2a1,双曲线实轴为2a2,令P在双曲线的右支上,由双曲线的定义|PF1|﹣|PF2|=2a2,①由椭圆定义|PF1|+|PF2|=2a1,②又∵PF1⊥PF2,∴|PF1|2+|PF2|2=4c2,③①2+②2,得|PF1|2+|PF2|2=4a12+4a22,④将④代入③,得a12+a22=2c2,∴4e12+e22==++≥+2=.故选A.【点睛】在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.9、B【解析】
首先根据题意得到“堑堵”是半个长方体的直三棱柱,再求其外接球的大圆面积即可.【详解】由题知:“堑堵”是半个长方体的直三棱柱,如图所示:设外接球大圆的半径为,.,所以外接球的大圆面积为.故选:B【点睛】本题主要考查三棱柱的外接球,同时考查三视图的直观图,属于中档题.10、D【解析】
求得函数的导数,然后令,求得的值.【详解】依题意,令得,,故选D.【点睛】本小题在导数运算,考查运算求解能力,属于基础题.11、A【解析】从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,因为先从其余3人中选出1人担任文艺委员,再从4人中选2人担任学习委员和体育委员,所以不同的选法共有种.本题选择A选项.12、D【解析】
由倾斜角求得斜率,由斜截式得直线方程,再将四个选项中的参数方程化为普通方程,比较可得答案.【详解】因为直线倾斜角是,所以直线的斜率,所以直线的斜截式方程为:,由消去得,故不正确;由消去得,故不正确;由消去得,故不正确;由消去得,故正确;故选:D.【点睛】本题考查了直线方程的斜截式,参数方程化普通方程,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:利用列举法求出事件“”包含的基本事件个数,由此能出事件“”的概率.详解:将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,用表示向上点数之和,则基本数值总数,事件“”包含的基本事件有:共6个,∴事件“”的概率.即答案为.点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.14、【解析】
将化简为的形式,根据复数是纯虚数求得的值.【详解】因为为纯虚数,所以.【点睛】本小题主要考查复数乘法运算,考查纯虚数的概念,属于基础题.15、3【解析】
现求出样本的中心点,再代入回归直线的方程,即可求得的值.【详解】由题意可得,因为对的回归直线方程是,所以,解得.【点睛】本题主要考查了回归直线方程的应用,其中解答的关键是利用回归直线方程恒过样本中心点,代入求解,着重考查了推理与计算能力,属于基础题.16、【解析】试题分析:由题意知本题是一个古典概型,∵试验发生包含的所有事件是从6个球中取3个,共有种结果,而满足条件的事件是所选的3个球中至少有1个红球,包括有一个红球2个白球;2个红球一个白球,共有∴所选的3个球中至少有1个红球的概率是.考点:等可能事件的概率.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解析】试题分析:(1)求出直线的普通方程,设,则点到直线的距离的距离,即可求点到直线的距离的最小值;
(Ⅱ)若曲线上的所有点均在直线的右下方则,有恒成立,即恒成立,恒成立,即可求的取值范围.试题解析:(Ⅰ)依题意,设,则点到直线的距离,当,即,时,,故点到直线的距离的最小值为.(Ⅱ)因为曲线上的所有点均在直线的右下方,所以对,有恒成立,即恒成立,所以,又,所以.故的取值范围为.【点睛】本题考查极坐标方程与普通方程的互化,考查参数方程的运用,考查学生转化问题的能力,属于中档题.18、(Ⅰ)22+4i(Ⅱ)【解析】
(Ⅰ)利用复数z1+z2是实数,求得a=4,之后应用复数乘法运算法则即可得出结果;(Ⅱ)利用复数的除法运算法则,求得,利用复数是纯虚数的条件求得的值,之后应用复数模的公式求得结果【详解】(Ⅰ)∵z1+z2=5+(a-4)i是实数,∴a=4,z1=2+4i,∴z1z2=(2+4i)(3-4i)=22+4i;(Ⅱ)∵是纯虚数,∴,故.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数是实数的条件,复数的乘法运算法则,复数的除法运算,复数的模,属于简单题目.19、(1);(2)【解析】
(1)由题,计算,,进而求出线性回归方程。(2)由题可得,计算的值,从而得出【详解】(1)由题意可得,,,∴y关于x的回归直线方程(2)由题意,平均数为,方差为,,,【点睛】本题考查线性回归方程与概率问题,属于简单题。20、(1)(2)见解析【解析】试题分析:(1),,可归纳猜测;(2)根据数学归纳法证明原理,当时,由显然结论成立.假设时结论成立,即只需证明当时,即可..试题解析:(1)由,及得,于是猜测:(2)下面用数学归纳法予以证明:当时,由显然结论成立.假设时结论成立,即那么,当时,由显然结论成立.由、知,对任何都有21、(1)证明见解析;(2)证明见解析.【解析】分析:⑴两边同时平方即可证明不等式⑵构造同理得到其他形式,然后运用不等式证明详解:(1)证明:要证成立,只需证,即证,只需证,即证显然为真,故原式成立.(2)证明:∵,∴.点睛:本题主要考查的是不等式的证明,着重考查了基本不等式的变形与应用,考查了综合法和推理论证的能力,属于中档题。22、(1)证明见解析;(2).【解析】
过D作平行线DH,则可得两两垂直,以它们为坐标轴建立空间直角坐标,求出长,写出的坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《试乘试驾模》课件
- 2024年柳州铁路局金城江医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年05月广西中信银行南宁分行社会招考(519)笔试历年参考题库附带答案详解
- 2024年柳城县妇幼保健院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年松桃苗族自治县人民医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年05月山东中信银行山东济南分行春季校园招考笔试历年参考题库附带答案详解
- 2024年杭州市第四人民医院杭州市肿瘤医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年杭州市拱墅区红十字会医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年杭州市余杭区中医医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2025年人教A版五年级英语上册阶段测试试卷
- 2024年全国乡村医生考试复习题库及答案(共360题)
- 全屋定制家具店合伙经营协议书2024年
- 建筑施工安全生产隐患识别图集(钢结构工程)
- 城市道路与开放空间低影响开发雨水设施
- 电气二次危险点分析及控制措施
- 初中必背古诗文138首
- 蓝色国家科学基金4.3杰青优青人才科学基金答辩模板
- DLT 5434-2021 电力建设工程监理规范表格
- 2024年房屋交接确认书
- 拓展低空经济应用场景实施方案
- 北京市东城区2023-2024学年八年级上学期期末生物试题【含答案解析】
评论
0/150
提交评论