分析多电源电路的可靠性设计-技术方案_第1页
分析多电源电路的可靠性设计-技术方案_第2页
分析多电源电路的可靠性设计-技术方案_第3页
分析多电源电路的可靠性设计-技术方案_第4页
分析多电源电路的可靠性设计-技术方案_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档-下载后可编辑分析多电源电路的可靠性设计-技术方案随着科学技术的发展,通信系统变得越来越发达,使得通信系统的电路中,大多存在两种以上的电源,实际工程应用中还常有蓄电池提供后备供电的情况,对于这些电路,在电压变化的过程中,可能会引发电路无效复位或上电失败的故障。对此,本文提出了一种实用的解决方案。

图1:FPGA的上电加载机制。

目前以硬件描述语言(Verilog或VHDL)所完成的电路设计,可以经过简单的综合与布局,快速的烧录至FPGA上进行测试,是现代IC设计验证的技术主流。这些可编辑元件可以被用来实现一些基本的逻辑门电路(比如AND、OR、XOR、NOT)或者更复杂一些的组合功能比如解码器或数学方程式。在大多数的FPGA里面,这些可编辑的元件里也包含记忆元件例如触发器(Flip-flop)或者其他更加完整的记忆块。

系统设计师可以根据需要通过可编辑的连接把FPGA内部的逻辑块连接起来,就好像一个电路试验板被放在了一个芯片里。一个出厂后的成品FPGA的逻辑块和连接可以按照设计者而改变,所以FPGA可以完成所需要的逻辑功能。

随着通信设备复杂程度的提高,工程应用对设备的可靠性要求也随之提高。各种电源配送方案在工程运用上得到了广泛的应用,由于供电系统的切换,通信设备内各部件将面临上电初始化的考验。

电路上电问题分析

现在通信机房大多采用-48V直流电源,而电子元器件一般采用低电压供电,以5V和3.3V为常见,近几年随着低功耗器件的大量使用,1.5V、1.8V、2.5V电源也被采用。在同时使用多种电源时,可采用多种电源模块,下面就两种典型情况作简单分析。

1.采用多电源模块设计的电路

这种设计一般包括1只48-5V电源模块和1只48-3.3V电源模块。其中5V电源模块主要给电路内5V器件供电;3.3V电源模块主要给电路内FPGA、ASIC供电,以及供给直流电压转换器进行更小电压的转换。这里应当指出,如果采用线性调压器(LDO)进行小电压转换时,上级电压通常采用3.3V,因为常用的1.5V、1.8V、2.5V与5V的压降很大,在进行电压转换的时候将损失更多功率,同时增加系统的散热负担。

对于这种设计,由于不同电源模块的指标差异,存在上电顺序的问题。如果5V达到稳定的时间比3.3V早,那么将可能造成如下问题:a.5V器件已经运行正常,而3.3V的FPGA、ASIC还未加载或初始化完毕。如果电路内MCU单元为5V供电,电路工作将不正常,这种情况理论上可以通过在MCU程序代码里添加空转等待语句,但是实际上仍然存在问题,见下面的分析。

b.FPGA加载失败。图1显示了一般可编程逻辑器件的上电加载机制。图2显示了48-3.3V的某品牌电源模块在用蓄电池加电时,其电压在上升过程中与达到稳定状态前出现的较为严重的波动,测试其他电压,也发现类似情况。

从图1、图2可以分析到,FPGA在上电过程中需要自检电压,一旦所有要求的电压值大于某个范围就开始加载,而此时如果电压波动较大,那么FPGA可能会加载失败,因为当波动的电压处于波峰时FPGA快速检查电压并可能通过,当然,现在不少FPGA在上电自检的时候都有个监测电压是否稳定的过程,加载失败的情况基本上很少,不过大部分的FPGA对电压都有严格的要求。

图2:电源纹波示例。

c.与b类似,很多ASIC专用芯片、CPLD在上电初始化的时候都需要有稳定的电压,这里不再累述,可以参阅相关芯片资料。

2.采用单电源模块设计的电路

目前在系统设计中,为了兼容各种电压也常采用48-5V单电源模块和加直流电压转换器的方案。单电源模块也存在上电顺序先后的问题。因此小于5V的电压上电肯定晚于5V.

在蓄电池供电的情况下,由于蓄电池的本身特性,在上电的时候其电压是缓慢上升的,由于现在DC-DC模块的设计差异,某些模块在慢上电的过程中出现的电压摆动仍然会影响FPGA和ASIC的初始化。

解决方法

对应可能出现的问题,可以找到相应的解决方法。在前文分析的种情况下,对应a,可以复位MCU;对应b,可以复位FPGA;对应c,可以复位相关芯片。对于第2种情况,复位相应的芯片也可以解决问题。所以直接有效的方法就是复位。

微处理器用一片或少数几片大规模集成电路组成的中央处理器。这些电路执行控制部件和算术逻辑部件的功能。微处理器与传统的中央处理器相比,具有体积小,重量轻和容易模块化等优点。微处理器的基本组成部分有:寄存器堆、运算器、时序控制电路,以及数据和地址总线。微处理器能完成取指令、执行指令,以及与外界存储器和逻辑部件交换信息等操作,是微型计算机的运算控制部分。它可与存储器和外围电路芯片组成微型计算机。

MAX708是一种微处理器电源监控芯片,可同时输出高电平有效和低电平有效的复位信号。复位信号可由VCC电压、手动复位输入或由独立的比较器触发。因此可以利用MAX708的这个特点来解决电路内MCU、FPGA、ASIC的上电复位问题。

如图3所示,当PFI端子上的电压值小于1.25V时,PFO端子将输出低电平。由于PFI端子的这个特性,可以用它来监控电路上的1.5V电压。在通信设备里,电路上一般含有5V、3.3V、2.5V、1.8V、1.5V的电压值,1.5V应该属于末级电压,就是说通过直流电压转换器转压出来的,我们监控了电压,自然也就不必理会它的上级电压了。

图3:利用MAX708实现上电复位应用。

这里PFI上的电压值大概为1.3V,当然电压值越接近1.25V,电压监控的灵敏度越高。可以用公式{(Vsupply-VPFI)/R1}=(VPFI/R2)计算出需要的电阻比值。这里Vsupply为1.5V,VPFI为1.3V.

可以想象,电路上电过程中,1.5V的末级电压如果没有达到要求,复位信号将一直存在,包括给MCU的RST复位信号,和给其它芯片的低电平有效的复位信号。图3中的MREST为手动添加的复位信号。

需要指出的是,MAX708本身可以监控VCC电压,这对电路采用多电源模块的设计是很有用的。因为两个电源模块相互独立,5V和1.5V可能不是源于同一个电源模块,所以在监控1.5V的同时也需要监控5V电压。

当然,由于MAX708芯片本身的限制,它无法监控小于1.25V的电压。但是在电信级设备中,功耗问题并不很迫切,所以这样小的电压基本上应用很少。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论