中考数学知识点全总结_第1页
中考数学知识点全总结_第2页
中考数学知识点全总结_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

中考数学知识点全总结

中考数学学问点总结

一次函数的图象和性质:

(1)图象:一次函数的图象是过点(,0),(0,b)的一条直线,正比例函数的图象是过点(0,0),(1,k)的直线;|k|越大,(1,k)就越远离x轴,直线与x轴的夹角越大;|k|越小,(1,k)就离x轴越近,直线与x轴的夹角越小;

(2)性质:k0时,y随x增大而增大;k0时,y随x增大而减小;

(3)图象跨越的象限:①k0,b0经过一、二、三象限;②k0,b0经过一、二、四象限;③k0,b0经过一、三、四象限;④k0,b0经过二、三、四象限。即k0,一三;k0,二四;b0,一二;b0,三四。

(4)直线和的位置关系为:;相交于y轴上;b0b=0b0增减性k0y随着x增大而增大k0y随着x增大而减小

用割补法求面积,基本思想是全面积等于各部分面积之和,在割补时需要留意:尽可能使分割出的三角形的边有一条在坐标轴上,这样表示面积较为便利。坐标平面内图形面积算法:把图形分割或补为底边在坐标轴或平行于坐标轴的直线上的三角形、梯形等。

求函数的解析式往往运用待定系数法,待定系数法的步骤:(1)设出含待定系数的函数解析式;(2)由已知条件得出关于待定系数的方程(组),解这个方程(组);(3)把系数代回解析式。

认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系:(1)一元一次方程kx+b=y0(y0是已知数)的解就是直线上,y=y0这点的横坐标;(2)一元一次不等式y1kx+by2(y1,y2是已知数,且y1反比例函数的定义及解析式求法:(1)定义:形如(k0,k是常数)的函数叫做反比例函数,其自变量取值范围是x0;(2)解析式求法:应用待定系数法求k值,由于k=xy,故只需要已知函数图象上一点,即求出函数的解析式。

中考反比例函数数学学问点

1、反比例函数的概念。一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像。反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或其次、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永久达不到坐标轴。

3、反比例函数的性质。反比例函数k的符号k0k0图像yoxyo=k=0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x的增大而减小。①x的取值范围是x0,y的取值范围是y0;②当k0时,函数图像的两个分支分别在其次、四象限。在每个象限内,y随x的增大而增大。

4、反比例函数解析式的确定。确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

5、反比例函数的几何意义。设是反比例函数图象上任一点,过点P作轴、轴的垂线,垂足为A,则

(1)△OPA的面积.

(2)矩形OAPB的面积。这就是系数的几何意义.并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。

矩形PCEF面积=,平行四边形PDEA面积=

中考二次函数数学学问点

二次函数

二次函数的解析式有三种形式:

(1)一般式:

(2)顶点式:

(3)当抛物线与x轴有交点时,即对应二次好方程有实根和存在时,依据二次三项式的分解因式,二次函数可转化为两根式。假如没有交点,则不能这样表示。

留意:抛物线位置由打算.

(1)打算抛物线的开口方向

①开口向上.

②开口向下.

(2)打算抛物线与y轴交点的位置.

①图象与y轴交点在x轴上方.

②图象过原点.

③图象与y轴交点在x轴下方.

(3)打算抛物线对称轴的位置(对称轴:)

①同号对称轴在y轴左侧.

②对称轴是y轴.

③异号对称轴在y轴右侧.

(4)顶点坐标.

(5)打算抛物线与x轴的交点状况.、

①△0抛物线与x轴有两个不同交点.

②△=0抛物线与x轴有的公共点(相切).

③△0抛物线与x轴无公共点.

(6)二次函数是否具有、最小值由a推断.

①当a0时,抛物线有最低点,函数有最小值.

②当a0时,抛物线有点,函数有值.

(7)的符号的判定:

表达式,请代值,对应y值定正负;

对称轴,用处多,三种式子相约;

轴两侧判,左同右异中为0;

1的两侧判,左同右异中为0;

1两侧判,左异右同中为0.

(8)函数图象的平移:左右平移变x,左+右;上下平移变常数项,上+下;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来查找。

(9)对称:关于x轴对称的解析式为,关于y轴对称的解析式为,关于原点轴对称的解析式为,在顶点处翻折后的解析式为(a相反,定点坐标不变)。

(10)结论:

①二次函数(与x轴只有一个交点二次函数的顶点在x轴上=0;

②二次函数(的顶点在y轴上二次函数的图象关于y轴对称;

③二次函数(经过原点,则。

(11)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论