一种低噪声振荡器的设计-设计应用_第1页
一种低噪声振荡器的设计-设计应用_第2页
一种低噪声振荡器的设计-设计应用_第3页
一种低噪声振荡器的设计-设计应用_第4页
一种低噪声振荡器的设计-设计应用_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档-下载后可编辑一种低噪声振荡器的设计-设计应用摘要:基于PWM技术的D类音频功放已广泛应用于各类电子产品中,PWM载波由振荡器产生,振荡器的性能直接影响D类功放的性能。文中主要从提高电路抗噪能力的角度提出一种基于BCD工艺的低噪声频率稳定振荡器的设计,噪声电流仅为0.42nA。该电路能在10~36V和-40~150℃范围内正常工作,振荡频率随电压的变化率小于1%,且具有主-从工作模式的同步功能。通过一个外接电阻调节振荡频率范围为300~500kHz。该电路已成功应用于一种*率D类音频功放中。

近年来,随着电子产品正在向小型化、便携式方向发展,D类音频功率放大器凭借其小尺寸、高效率、低功耗、低失真等优势成为市场的需求,得到业界的普遍认可。利用D类功率放大器可以设计出更小更薄和更有效率的电子产品,不仅节约成本,还可延长便携式产品电池的工作时间。

D类音频功放普遍采用脉冲宽度调制(PWM)技术,PWM载波由振荡器产生。D类功放为了不失真地反映音频输入信号和降低输出端的噪声要求载波频率必须很稳定。然而,振荡器因噪声、串扰、电源电压变化、温度变化等因素引起的时序抖动使得振荡器波形的占空比和频率不再稳定。目前已有许多文献从温度和电源电压的角度提出了频率稳定的振荡器设计方法,在此基础上,本文从提高电路抗噪能力的角度提出了一种低噪声频率稳定的振荡器设计。鉴于该振荡器用于*率D类音频功放,工作电压达到36V,可工作在开关模式且功耗极低的DMOS高压功率器件适合作为高压管,因此采用目前适合用于制造电源管理、显示驱动等IC的BCD工艺。

1振荡器频率的设定

D类音频功放中,振荡器产生的方波频率就是脉冲宽度调制器(PWM)的载波频率。载波频率的高低决定了对输入音频信号的采样速率和对输出滤波器的要求,影响了器件的尺寸、成本及性能。载波频率较低时,为了得到不失真的输出信号,要求输出滤波器的截止频率也较低,这样就必须增大滤波器的尺寸,从而增加芯片面积,提高成本。根据采样定理,如果载波频率fc与输入信号的频率finmax满足:

那么,用低通滤波器就能不失真地恢复原信号。实际上,为了实现产品性能和尺寸方面的折衷,一般将fc设计为finmax的十倍以上。因此,本设计决定将振荡器的频率设计为300~500kHz之间可调。

2电路设计

所设计的振荡器电路结构如图1所示,该振荡器主要由四部分组成:偏置电流产生电路,三个比较器,数字逻辑控制电路和充放电回路。振荡器输出方波信号Vosc是通过控制电容C1、C2进行轮流充放电来产生的。Vosc的频率由偏置电流Ibias、电阻Rosc、电容C1、C2及其充放电电流决定。因此,引起振荡器时序抖动的噪声源主要就是偏置电流的噪声电流、Rosc和C1、C2上的噪声电压以及由比较器产生的噪声电压。Rosc和C1、C2上的噪声电压主要是由噪声电流引起的,减小噪声电流便可降低噪声电压。应用时,在Rosc两端并联一个大电容可以有效消除Rosc的噪声电压;因比较器产生的噪声电压相对而言比较小,可将其忽略不计。

图1振荡器结构框图

2.1低噪声PTAT电流产生电路

传统的PTAT电流产生电路如图2(a)所示,它主要由与电源电压无关的偏置电路和三极管组合而成。MP1~MP3为相同的P管,MN1、MN2为相同的N管,Q1、Q2的管子数之比为1:n,可得电流Ibias0的大小为:

可见,在电流Ibias处贡献噪声的主要是晶体管Q1、Q2的散粒噪声和电阻R0的热噪声,三者在Q2基极处产生的等效噪声电压为:

因ICQ1=ICQ2=Ibias,gmQ1=gmQ2=Ibias/VT,故有:

可得输出噪声电流为:

由式(5)可知,增大n值便可降低噪声电压。

为了进一步降低噪声电流,一种简单的解决方法如图2(b)所示,仅在图(a)的基础上叠加了3个基极集电极短接的三极管,依据上述计算方法,在图2(a)(b)中Ibias电流大小相同的条件下,可得此时Ibias的噪声电流为减少为式(5)的1/4,电路中取n=4,可实现噪声电流小于0.5qIbias。

图2PTAT电流产生电路

同时,考虑到该振荡器工作于大电压下,取MP1~MP5为高压P管,漏源耐压为24V,MN1、MN2为LDNMOS管,漏源耐压为40V,保证每个管子在10~36V的电压范围内不会被击穿;为了减小电路对电源的依赖性,MP1~MP5均采用较长的沟道长度;MP2为启动管,使偏置电路在电源上电时摆脱简并偏置点,Iref是由带隙基准电路产生的基准电流,大小为50A。值得指出的是,理论上电流Ibias是与温度成正比,实际上由于电阻的温度系数会使结果产生较大的偏差,或为正温度系数或为负温度系数甚至有可能为零温度系数,所以要正确选择合适的电阻R0。

2.2振荡回路

比较器、数字逻辑控制电路和充放电回路共同构成振荡回路,电路如图3所示。

图3振荡回路原理图

比较器Comp1的输出信号V1是整个振荡回路的使能信号,V1为高电平时有效。为使振荡器在各种工作条件下(Rosc:25~41k;VDDA:10~36V;Temp:-40~150℃)均能起振,必须保证V0Vref,即:

如图3所示,电路上电时,由于存在电容Cosc,电压V0上升比较缓慢,VrefV0,电压比较器Comp1输出低电平,使能信号V1为低电平,振荡器不工作。

此时,V4、V5均为高电平,比较器Comp2、Comp3均输出低电平,Vosc0处于高阻态。一旦V0Vref,比较器Comp1状态发生翻转,输出电压V1为高电平,振荡器开始工作。因V1为高电平,V4仍保持高电平,使V5从高电平变为低电平,MN5管关断,电路通过MP6管对电容C2进行充电,当电容C2上的电位V7V0时,比较器Comp3同相端为高电平,输出电压V3也为高电平,于是与或非门G1发生翻转,电压V4变为低电平,V5也相应地变为高电平,C2通过MN5放电,V7V0,比较器Comp3输出低电平。V5电平从高变低又从低变高的这段时间即为振荡器周期的一半。因V4为低电平,MN4管关断,电路通过MP7管对电容C1充电,当电容C1上的电位V6V0时,比较器Comp2的同相端为高电平,输出电压V2为高电平,因此时V3为低电平,于是与或非门G1发生翻转,V4为高电平,MN4导通,C1通过MN4放电,V6

调节电阻Rosc从25k变化到41k,可实现振荡器频率从300~500kHz之间变化。

该振荡器还设计了主从工作模式的功能,当音频设备需要多个音频功放共同驱动时,要求每个功放的振荡信号能保持同步,避免差拍。如图3所示,将电阻Rosc短接,电路进入从属模式,反之,接上电阻Rosc,电路则工作在主人模式。应用时,将一个功放设置为主人模式,其余皆为从属模式,并将所有功放的Vosc0端接在一起,电路便可实现同步工作。主人工作模式时,使能信号V1为高电平,二选一选择器Mux21选择输出V4,振荡器输出信号Vosc即为V4;从属工作模式时,使能信号V1为低电平,此时Vosc0作为电路的输入信号,二选一选择器选择输出Vosc0。

3仿真结果

电路仿真采用无锡华润上华(CSMC)0.5mBCD工艺模型,仿真环境为CadenceSpectre.该电路工作电压范围为10~36V,典型值为22V,温度范围为-40~150℃。在典型条件下对图2(a)、(b)分别进行噪声分析,得出在1Hz~20kHz的范围内,图2(a)的噪声电流In,bias为1.02nA,而图2(b)仅为0.42nA,结果与理论分析接近。

在温度为27℃条件下,对偏置电流Ibias0进行DC扫描,扫描变量为电源电压VDDA。仿真波形如图4所示,电流Ibias0随VDDA仅变化1.5A,实现了很好的电压特性。

图4Ibias0随VDDA的变化。

在VDDA=22V,Temp=27℃,Rosc=39k条件下,测出该振荡电路的瞬态响应如图5所示。可以看出,只有当V0Vref时,振荡器才开始振荡,稳定后振荡频率约为320kHz。

对振荡器频率进行参数分析,分析变量为电阻Rocs,扫描范围为25~41k,固定VDDA为22V,温度为27℃,分析结果如图6所示。可以看出,随着Rosc变化,振荡器频率在305~482kHz之间变化。

图5振荡器的瞬态响应。

图6振荡器频率随Rosc的变化

对振荡器频率进行参数分析,分析变量分别为VDDA和温度Temp,VDDA扫描范围为10~36V,Temp扫描范围为-40~150℃,Rosc固定为39k,分析结果如图7所示,该振荡器具有很好的频率稳定性,随着电源电压的变化,频率变化小于1%;随着温度变化频率的变化也较小,约为8.9%。

图7

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论