版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于以学定教的“六模块建构式”数学课堂
随着新课程改革的不断深入,围绕“高效课堂”进行的课堂教学改革备受关注,连云港市也一直在推行“六模块”(自学质疑、交流展示、互动探究、精讲点拨、矫正反馈、迁移应用)建构式课堂的教学模式.前不久,有幸参加“‘六模块’建构式”课堂展示活动,执教苏科版课标教材七年级下册11.3《探索直角三角形全等的条件》,感触颇深.“以学定教”是以学生“全体的”和“全面的”发展为核心,关注在学习过程中最大限度的释放出学生的“本质潜能”.本课的教学策略就是在学生充分准备的学习基础之上,即对教师预设的学案充分自学与交流后,让学生展示思维过程进行交流、质疑和点评,通过不断深刻与系统地提出问题、解决问题,突破学生思维与认识的封闭性,拓宽和引领学生求异创新,最终回归课本和基础.一、教学过程1.自学质疑请独立完成学案,在完成的过程中可以适当地看书.学案:问题1:前面我们已经学习了判定三角形全等的条件,试着写出来!问题2:两个Rt△ABC和Rt△DEF,已知∠B=∠E=90°.想一想:根据我们前面学过的知识,还需要添加什么条件,就可以得出这两个三角形全等?提示:可以根据学过的方法分类写出理由.问题3:试试看:(1)画角∠PCQ=90°,在射线CP上取CB=2cm,以点B为圆心,3cm为半径画弧交射线CQ于点A,连接AB.(2)画角∠MDN=90°,在射线DM上取DE=2cm,以点E为圆心,3cm为半径画弧交射线EN于点F,连接EF.用剪刀剪下两个三角形,所画的两个三角形能够完全重合吗?由此你可以得到什么结论?请小组同学合作完成!设计思路①学案是保障高效课堂的一个良好载体,它的设计必须关注教学目标、必备旧知、新知的发生发展过程,设计学案之前必须理清旧知与新知的关系,按照逻辑递进关系抓住新知立足于旧知的发生发展过程中的关键点,在关键点上进行问题设计,通过这些问题的设置,为课堂教学中问题的解决做好铺垫.如问题1的设置,是本课解决问题的立足点,不仅为问题2的有效解决做了很好的铺垫,也为后续课堂教学中学生的生成奠定了坚实基础.②学案不是教案,突出主要问题即可,总的容量和难度要有控制,要让学生为完成学案中的问题,必须带着问题去看书,增强预习的目的性,学生必须利用已有的经验和技能去解决学案中的问题,能够促进对旧知运用和对新知的联想,在完成这些问题的过程中,产生一些思维的火花.③对于本课内容的安排,原教材的呈现方式与学情并不完全吻合,教材中新知识的发生过程呈现不能满足学情需要,与教师的教学理解也有偏差,在设计学案的问题时,笔者围绕教学目标进行了重新调整整合.以上三点设计思路,均基于“以学定教”的教学思想,学案的设计立足于学情.2.交流展示师:前面我们已经学习了判定三角形全等的条件,试着写出来!生:SAS、ASA、AAS、SSS.(师板书)师:(画出两个全等的直角三角形)已知直角三角形ABC和直角三角形DEF,∠B=∠E=90°.我们用Rt△ABC和Rt△DEF来表示直角三角形ABC和直角三角形DEF.想一想:根据我们前面学过的知识,还需要添加什么条件,就可以得出这两个三角形全等?下面我们各个小组组内交流,提出三点要求:(1)先交流,由组长布置任务,主讲、补充、记录、板书、展示都由哪个同学负责;(2)交流完了接着到各小组的黑板上板书讨论的内容,根据集体的意见板书,一并写出小组内无法解决的问题,因为地方限制,我们规定1~4组板书第2题,5~9组板书第3题;(3)最后由一位同学展示讲解.课后我们来比一比,哪个组讨论问题最好,提出的问题最有价值.设计思路影响学习的唯一最重要的因素就是学生已经知道了什么,要探明这一点,并应据此进行教学,这也是“以学定教”的核心思想,陶行知在《伪知识阶级》一文中说:“我们要有自己的经验做根,以这经验所发生的知识做枝,然后别人的知识方才可以接的上去,别人的知识方才成为我们知识的一个有机部分,这样一来,别人的知识在我们的经验里活着,我们的经验也就生长在别人知识里去开花结果”鉴于此,笔者考虑让学生充分交流,让学生在一定的感性认识基础上,通过互动交流,把间接经验(同学们讲的)和直接经验(自己的经验)结合起来,相互印证,才能达到对知识的真正的理解和融会贯通.3.互动探究,精讲点拨生1(看图):根据SAS,添加AB=DE,BC=EF,可得Rt△ABC和Rt△DEF全等,根据ASA,添加∠A=∠D,AB=DE,或者添加∠C=∠F,BC=EF,可得Rt△ABC和Rt△DEF全等,根据AAS,添加∠A=∠D,BC=EF,或者添加∠C=∠F,AB=DE,可得Rt△ABC和Rt△DEF全等.生2:我觉得还可以加AB=DE,BC=EF,AC=DF,根据SSS得到Rt△ABC和Rt△DEF全等.生3(还有几个学生也赞成):不对,这样一加,条件就变多了,不需要直角条件就可得三角形全等.生4:题目说了添加条件,并没有说不可以多添条件.(有部分学生赞成)师:那好,我在你添加三条边相等的条件下,再添加∠A=∠D行不行?生5:没必要!生2:条件多了!师:那么添加三条边对应相等是否必要?多不多呢?生6:很显然,根据生1的解答,我们知道添加AB=DE,BC=EF,就可得Rt△ABC和Rt△DEF全等,看来若再添加第三条边AC=EF确实多了.生2:那么要是就添加AB=DE,AC=DF或BC=EF,AC=DF,两个直角三角形是否能全等呢?师:问得好!那么我们来看看学案中问题3的解决.生7:(徒手画图)先按要求画出角∠PCQ=90°,在射线CP上取CB=2cm,以点B为圆心,3cm为半径画弧交射线CQ于点A,连接AB.接着画角∠MDN=90°,在射线DM上取DE=2cm,以点E为圆心,3cm为半径画弧交射线EN于点F,连接EF.(因为是徒手画图,所以画出的两个直角三角形并不全等)根据图形得出结论“斜边和一条直角边对应相等的两个直角三角形全等”生8:我来补充!根据生7的图形,我得出在Rt△ABC和Rt△DEF中,因为BC=EF,AC=DF,所以Rt△ABC≌Rt△DEF.师:你怎么知道两个三角形全等呢?生8:看出来的!师:同学们,请看生9在黑板上画的图,他先利用三角尺的两条直角边画出∠PCQ=90°,然后在射线CP上取CB=2cm,又用圆规以点B为圆心,3cm为半径画弧交射线CQ于点A,连接AB(教师边说边用三角尺和圆规做示范),这样画出的图形才是规范的,否则画出的图形往往误差很大,“差之毫厘,失之千里”的道理同学们都是知道的吧,所以要像生9一样地规范画图.请同学们剪下自己用圆规和三角尺画的两个三角形,比一比,看看怎样?生10:重合!师:那么由此说明什么呢?生11:两个直角三角形,如果知道一条斜边和一条直角边对应相等,就可以判断它们全等.生12:(抢上)可以简记为“斜边直角边”或“HL”.师:说得好!同学们再看看生13提出的问题(在互动交流的时候已经进行板演了)∠PCQ=∠MDN都等于90°了才得出全等,如果要是这两个角不等于90°,会不会也有这样的结论呢?大家来思考一下.生沉默,但大多数的学生都在思考.师:大家想想看,∠PCQ和∠MDN不为90°,有可能为多大?生14:45°!师:可以吗?众生:可以!师:那我们来画画看!画△ABC,使∠A=45°,AB=4cm,BC=3cm.(生很投入地开始画,而且大多数学生都使用圆规)每个同学都把画出的三角形剪下来,看看是否能重合.生:不重合.师:这说明了什么?师:(生跃跃欲试)我们等一会再来总结!师:这个角还可以是多少度呢?生15:30°!生16:60°!生17:120°!师:(对着生17)你为什么要选择120。呢?生17:30°、60°、45°都是锐角,我想看来如果只要已知角是个锐角,那么这两个三角形就不全等,而120。是钝角,我想试试看是否全等.师:说得真好!你真是一个肯动脑筋的孩子!同学们,那我们就再把∠A换成120。试试看,画△ABC,使∠A=120°,AB=4cm,BC=7cm.(生很投入地开始画,所有学生都使用圆规)每个同学都把画出的三角形剪下来,看看是否能重合.众生(很兴奋):重合.师:好!这又说明了什么?因为时间有限,我们下课后再讨论这个问题好吗?设计思路一节好的数学课的显著特点是把握数学本质,理解数学,提高素养.一节数学课,有什么核心概念?涉及哪些数学思想方法?要解决哪几个主要问题?怎样去发现?每一个问题的解决需要铺设哪些“台阶”?学生可能会遇到哪些问题?教师可以从哪些方面引起学生新的认知冲突?这些都是在制定学案和教学设计时必须考虑的.“以学定教”体现在本节课是立足学生学情,以问题为主线,启迪学生思考,使学生在课堂学习中深刻地感受如何发现问题、提出问题、分析问题、解决问题的整个过程,理解和认识知识发生和发展的必然的因果关系,从中领悟分析、思考和解决问题的思想方法.4.矫正反馈(例题学习)已知如图1,AC⊥BC,AD⊥BD,垂足分别为C、D,AC=BD,Rt△ABC与Rt△BAD全等吗?为什么?5.迁移应用请根据“HL”解决(1)~(3)题.(1)如图2,AD是△ABC的边BC上的高,再加一个条件________,得到△ABD≌△ACD.(2)如图3,AC⊥AB,DF⊥DE,AC=DF,再加一个条件________,得到△ABC≌△DEF.(3)如图4,AB⊥BC,AC=BD,当CD与BC具有怎样的位置关系时,得到△ABC≌△DCB.(4)如图5,AB=DF,CF=EB,AC⊥CE,DE⊥CE,垂足分别为C、E.△ABC与△DEF全等吗?为什么?(5)已知:如下页图6,AB=CD,E、F在AC上,∠AFB=∠CED=90°.AE=CF.①△ABF与△CDE全等吗?为什么?②你发现AB与CD除相等外还有什么关系?请说明理由.设计思路数学题可谓是千变万化,教师所选择的例、习题是否恰当,直接关系到学生对知识的掌握程度.对学生自身思维的培养,智力的开发都非常重要,所以在选择题目时,要充分考虑其代表性与思维含量,以及它所承载的数学思想与方法,要从学生实际出发,结合教材,整合与拓展教材,真正做到“以学定教”.如检测巩固1~3题的设置,既考虑到学生对本课新知的复习巩固,又考虑到学生对已有旧知和新知的联系与区分,事实证明,在课后的批改中,有部分学生,没有注意题目中“根据‘HL’解决”这一要求,还是添加了一些判定普通三角形全等的条件.二、课后反思1.不要把“直角三角形全等的条件”作为知识来教,而是把探究的过程作为一种方法来教数学教学教什么?除了教材知识以外,更主要的是教给学生数学思想方法,这是铭记在学生头脑中起永恒作用的观念和文化,是数学教学的终极目标.当前的课程改革,多聚焦在教学方式的改变上,单一的接受式教学已不多见,探究、合作的教学方式逐渐成为课堂常态.但是,关注数学思想方法的课堂教学还不多.数学思想方法是以基础知识和基本技能为载体,隐性地存在于数学知识中,在教学中将思想方法化隐为显,使学生在获得数学显性知识的同时受到思想方法的熏陶,这是本节课的指导思想,通过问题的设计,让学生在应用所学知识分析、解决这些问题的过程中不断丰富对数学方法的体验,积累对数学思想方法的认识,从而逐步习得数学思想方法.本课在设计与教学的过程中,一直力求从学生的最近发展区生成问题,如学案中三个问题的设置,层层递进,并以此作为载体引导学生探究、发现;在展示矫正的过程中,始终坚持“以学定教”,积极渗透分类讨论、数形结合、化归、类比等数学思想,帮助学生在教学过程中积累经验,领会思想和方法.事实上,数学教师在教学过程及其设计上的差别,首先取决于他的数学教育观,如果认为数学教育的目的就是传授知识,看待教学关系是教重于学,师重于生,那么教学过程及其设计就会趋向于一种追求“结果型”的模式;如果认为数学教育的目的是以学生为本,实现学生的全面和谐的发展,以学定教,教学相长,教学过程就会追求一种“过程型”、“探究型”的模式.2.应将一节课的知识放在知识系统中去讲解学习,不能就课论课,就教材论教材教好数学的前提是教师自己先理解数学,把握数学脉络,做到心中有大树.教师对数学知识的理解深度,对数学教学的把握程度,都会对数学课堂的有效性和深刻性产生重要影响,缺乏数学理解的教学必然苍白无力,浅薄低效.因此,设计一节课,就应把理解作为数学教学的基本目标和首要目标,数学课堂始于教师的数学理解.数学课堂还要求教师要注重数学的本质及其发展历程,因为数学课堂教学的方向,体现在知识传承中,要让学生看到知识发生与发展的过程,在感悟今天所学到的知识本质的同时,将已有的知识经验能力都能放到一个知识系统中.“直角三角形全等的条件”是在学生已经掌握了普通三角形四种全等判定条件的基础上设置的.教材为什么要在此处设置这段内容?为什么只单列直角三角形,不列出钝角三角形呢?这与前期所学的内容有什么关系?如果去掉这节内容,学生是否在今后的学习中会缺失一些方法和能力?本课在教学的过程中,学生提出的“∠PCQ=∠MDN都等于90°了才得出全等,如果要是这两个角不等于90°,会不会也有这样的结论呢?”这个问题,在开始的教学设计中本不打算提出,但随着课堂的有序展开,学生生成了这么一个有价值的闪光点,循着这个问题,可以得出:在锐角三角形中,已知两边及一边的对角对应相等,不能判定两个三角形全等;而在直角三角形和钝角三角形中,已知最大角对应相等,再已知其他任意两边对应相等则都能判定两个三角形全等.而这个结论就包含着本节课的重点——“直角三角形全等的条件”.如果教材在这里不将“直角三角形全等的条件”单列,而是改为“探索三角形已知边边角对应相等是否全等”,是否就形成了更完整的知识系统呢?陶行知的接知如接枝理论,给我的启迪是:教学中,如果我们能够留给学生足够的思考探索空间,就会发现课堂中很多问题是我们无法预设的,这些问题的出现正是学生在接知的过程中,自身的免疫力遇到外来干扰的正常反应,只要教师熟知数学知识系统,就能用适合的技术让学生在新旧知识之间进行无缝对接.3.追问不是一般的对话,而是对事物的深刻挖掘,是逼近事物本质的探究就教学来说,追问就是围绕教学目标,设置一系列问题,将系列问题与课堂临时生成的问题进行整合,巧妙穿插,进行由浅入深,由此及彼地提问,形成严密而又有节奏的课堂教学流程.数学教学中的有效追问是促进学生思考,实现“有效学习”的重要教学策略,课堂是师与生、生与生、生与本交互对话的学习场,教师适时巧妙地追问,能够有效激发学生的思维原动力,助推学习场的建立,学数学离不开思考,思考需要问题的呈现,没有问题,数学就无法进行,什么样的问题,就决定了什么样的思考,思考决定了教师的教学行为和学生的学习行为,而且教师追问什么、怎么追问、不同的追问方式和问题会产生不同的效果,因此准确地掌握新课标所要求的尺度,明确所学知识在教材体系中的地位和作用,恰当地把握学生的认知能力和思维水平,科学导向,有效追问,才能使学生有所思,有所悟,有所答,同时也能激发学生提出问题,发现问题,产生悬念,从而不断解决问题,收到理想的教学效果.本课先是围绕教学目标,从学生实际出发,在学案中设计了三个问题,前一个问题是后一个问题的基础,有效促进了学生的思考,特别是第三个问题,激发了学生的思维,为下面的合作交流的展开建立了平台,正是因为交流的充分,才使得下面的交流展示、精讲点拨环节中,学生自主生成,产生了意外的精彩,此时,教师没有因为学生的问题偏离自己准备好的预案而对学生提出的真实的、有价值的问题置之不理,而是对学生的个人见解和有创意的认识进一步追问,在思
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购销合同签订指南与常见问题
- 超市食品质量承诺函模板
- 车辆安全保证书示例样本
- 运动员遵守纪律保证
- 迟到承诺保证书模板
- 酒店食材供应协议案例
- 酒驾危害大签名保平安
- 钢筋工程分包合同守则
- 钢筋采购合同范本
- 铁矿粉购买合同
- 国家开放大学2024年12月《思想道德与法治试卷2-版本1》大作业参考答案
- 下肢静脉曲张硬化治疗
- 《黄金市场》课件
- 《员工职业规划培训》课件
- 2024年度品牌授权代理终止协议书
- 班组长安全培训资料
- Unit1 lesson 1 Me and my body说课稿2024-2025学年冀教版(2024)初中英语七年级上册
- 2024-2030年中国冶炼钛产业未来发展趋势及投资策略分析报告
- 作文写清楚一件事的起因经过和结果公开课获奖课件省赛课一等奖课件
- 心衰患者的容量管理中国专家共识-共识解读
- 心力衰竭患者体液容量管理相关知识试题及答案
评论
0/150
提交评论