




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初三数学教学案系列专题复习4PAGEPAGE4中考专题(阅读理解题)姓名学号1.阅读以下材料:对于三个数,用表示这三个数的平均数,用表示这三个数中最小的数.例如:;;解决下列问题:(1)填空:;如果,则的取值范围为.(2)①如果,求;②根据①,你发现了结论“如果,那么(填的大小关系)”.证明你发现的结论;③运用②的结论,填空:若,则.xyO(3)在同一直角坐标系中作出函数,,的图象(不需列表描点).通过观察图象,xyO填空:的最大值为.2.(05陕西省)阅读:我们知道,在数轴上,表示一个点.而在平面直角坐标系中,表示一条直线;我们还知道,以二元一次方方程的所有解为坐标的点组成的图形就是一次函数的图象,它也是一条直线,如图2-4-10可以得出:直线与直线的交点P的坐标(1,3)就是方程组在直角坐标系中,表示一个平面区域,即直线以及它左侧的部分,如图2-4-11;也表示一个平面区域,即直线以及它下方的部分,如图2-4-12.回答下列问题:在直角坐标系(图2-4-13)中,(1)用作图象的方法求出方程组的解.(2)用阴影表示,所围成的区域.3.(03南京)阅读下面材料:对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些回所覆盖.例如:图1中的三角形被一个圆所覆盖,图2中的四边形被两个圆所覆盖.回答下列问题:⑴边长为1cm的正方形被一个半径为r的圆所覆盖,r的最小值是cm;⑵边长为1cm的等边三角形被一个半径为r的圆所覆盖,r的最小值是cm;⑶长为2cm,宽为1cm的矩形被两个半径都为r的圆所覆盖,r的最小值是cm,这两个圆的圆心距是cm.4.(05南京)在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角。例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,2#课外独立练习班级姓名1(07台州)为确保信息安全,信息需要加密传输,发送方由明文密文(加密),接收方由密文明文(解密).已知加密规则为:明文对应的密文.例如明文1,2,3对应的密文2,8,18.如果接收方收到密文7,18,15,则解密得到的明文为()A.4,5,6 B.6,7,2 C.2,6,7 D.7,2,62.(04广西玉林)阅读下列材料,并解决后面的问题.在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c.过A作AD⊥BC于D(如图),则sinB=,sinc=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即.同理有.∴………………(*)即:在一个三角形中,各边和它所对角的正弦的比相等.(1)在锐角三角形中,若已知三个元素a、b、∠A,运用上述结论(*)和有关定理就可以求出其余三个未知元素c、∠B、∠C,请你按照下列步骤填空,完成求解过程:第一步,由条件∠B;第二步,由条件∠C;第三步,由条件c.(2)一货轮在C处测得灯塔A在货轮的北偏西的方向上,随后货轮以28.4海里/时的速度按北偏东的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西的方向上(如图11),求此时货轮距灯塔A的距离AB(结果精确到0.1.参考数据:sin=0.643,sin=0.906,sin=0.904,sin=0.966).3.如果一个图形绕一个定点旋转一个角(0°<≤180°),能够与原来的图形重合,那么这个图形就叫做旋转对称图形.例如,正三角形绕着它的中心旋转120°(如图2),能够与原来的正三角形重合,因而正三角形是旋转对称图形.图3是一个五叶风车的示意图,它也是旋转对称图形(=72°).图2图3显然,中心对称图形都是旋转对称图形,但旋转对称图形不一定是中心对称图形.下面四个图形中,是旋转对称图形的有()A.①②③ B.②③④C.①③④ D.①②③④4.阅读下面的短文,并解答下列问题:我们把相似形的概念推广到空间:如果两个几何体大小不一定相等,但形状完全相同,就把它们叫做相似体.如图4,甲、乙是两个不同的正方体,正方体都是相似体,它们的一切对应线段之比都等于相似比(a∶b).图4设S甲、S乙分别表示这两个正方体的表面积,则又设V甲、V乙分别表示这两个正方体的体积,则(1)下列几何体中,一定属于相似体的是()A.两个球体 B.两个锥体C.两个圆柱体D.两个长方体(2)请归纳出相似体的三条主要性质:①相似体的一切对应线段(或弧)长的比等于______;②相似体表面积的比等于______;③相似体体积比等于______.(3)假定在完全正常发育的条件下,不同时期的同一人的人体是相似体,一个小朋友上幼儿园时身高为1.1米,体重为18千克,到了初三时,身高为1.65米,问他的体重是多少?(不考虑不同时期人体平均密度的变化)5(05资阳)阅读以下短文,然后解决下列问题:如果一个三角形和一个矩形满足条件:三角形的一边与矩形的一边重合,且三角形的这边所对的顶点在矩形这边的对边上,则称这样的矩形为三角形的“友好矩形”.如图8①所示,矩形ABEF即为△ABC的“友好矩形”.显然,当△ABC是钝角三角形时,其“友好矩形”只有一个.(1)仿照以上叙述,说明什么是一个三角形的“友好平行四边形”;(2)如图8②,若△ABC为直角三角形,且∠C=90°,在图8②中画出△ABC的所有“友好矩形”,并比较这些矩形面积的大小;(3)若△ABC是锐角三角形,且BC>AC>AB,在图8③中画出△ABC的所有“友好矩形”,指出其中周长最小的矩形并加以证明.6..在平面内,先将一个多边形以点为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为,并且原多边形上的任一点,它的对应点在线段或其延长线上;接着将所得多边形以点为旋转中心,逆时针旋转一个角度,这种经过和旋转的图形变换叫做旋转相似变换,记为,其中点叫做旋转相似中心,叫做相似比,叫做旋转角.(1)填空: ①如图1,将以点为旋转相似中心,放大为原来的2倍,再逆时针旋转,得到,这个旋转相似变换记为( ,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 终止薪资合同协议
- 租赁合同变更地址协议
- 签协议合同纠纷
- 新招标代理合同范本
- 购车合同协议书
- 购买电脑合同书
- 经验分享2024年园艺师考试的集体备考技巧试题及答案
- 2024年农艺师考试相关知识树的构建与应用试题及答案
- 2024年农艺师考试中的关键竞争力试题及答案
- 古典文学面试题及答案
- 游戏人物立绘课程设计
- 人像摄影基础课件
- 《招标投标法》知识学习考试题库300题(含答案)
- 城市环境卫生各类人员配备定额
- 2025年北京农商银行招聘笔试参考题库含答案解析
- 露营地项目策划
- 《垂直绿化》课件
- 《原发性肝癌诊疗指南(2024年版)》解读
- 短视频剪辑课件下载
- 食品安全及传染病防控
- 中国远洋海运集团招聘笔试真题2023
评论
0/150
提交评论