




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省葫芦岛市锦郊中学2022-2023学年高三数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x+1)是奇函数,f(x-1)是偶函数,且f(0)=2,则f(4)=(
)A.
B.
C.
D.参考答案:A略2.为了得到函数的图象,只需将函数y=cos2x的图象(
) A.向左平移个单位长度 B.向右平移个单位长度 C.向左平移个单位长度 D.向右平移个单位长度参考答案:B考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件利用函数y=Asin(ωx+φ)的图象变换规率可得结论.解答: 解:函数=cos2(x﹣),故把函数y=cos2x的图象向右平移个单位长度,可得函数的图象,故选:B.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于中档题.3.已知椭圆的左、右焦点分别为F1、F2,点A为椭圆C短轴的一个端点,直线AF1与C的另一个交点为B,若|AF2|、|AB|、|BF2|成等差数列,则C的离心率为(
)
A.
B.
C.
D.
参考答案:B略2.
若非空集合A,B,C满足A∪B=C,且B不是A的子集,则A.“x∈C”是“x∈A”的充分条件但不是必要条件B.“x∈C”是“x∈A”的必要条件但不是充分条件C.“x∈C”是“x∈A”的充分条件D.“x∈C”既不是“x∈A”的充分条件也不是“x∈A”必要条件参考答案:【标准答案】2.B【试题解析】由韦恩图,知B正确.【高考考点】集合的运算的理解和充分条件与必要条件.【易错提醒】不理解要得到充分条件与必要条件,那个做为条件,那个做结论.【备考提示】对"抽象"的集合问题常用韦恩图来分析问题,这其实是数形结合的思想.5.函数的定义域是()A.{x|0<x<2}B.{x|0<x<1或1<x<2}C.{x|0<x≤2}D.{x|0<x<1或1<x≤2}参考答案:D6.已知(其中为正数),若,则的最小值是
A.2
B.
C.
D.8参考答案:C7.小王从甲地到乙地往返的时速分别为,其全程的平均时速为,则(
)A.
B.
C.
D.参考答案:A8.已知m,n为两个不相等的非零实数,则方程mx-y+n=0与nx2+my2=mn所表示的曲线可能是()
A
B
C
D参考答案:C9.已知,下列命题正确的是(
)A.若,则 B.若,则C.若,则 D.若,则
参考答案:C10.若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则(
) A.a<b<c B.c<a<b C.b<a<c D.b<c<a参考答案:C考点:对数值大小的比较.分析:根据函数的单调性,求a的范围,用比较法,比较a、b和a、c的大小.解答: 解:因为a=lnx在(0,+∞)上单调递增,故当x∈(e﹣1,1)时,a∈(﹣1,0),于是b﹣a=2lnx﹣lnx=lnx<0,从而b<a.又a﹣c=lnx﹣ln3x=a(1+a)(1﹣a)<0,从而a<c.综上所述,b<a<c.故选C点评:对数值的大小,一般要用对数的性质,比较法,以及0或1的应用,本题是基础题.二、填空题:本大题共7小题,每小题4分,共28分11.已知正三棱锥ABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为________.参考答案:略12.用数字1,2,3,4可以排成没有重复数字的四位偶数,共有____________个.参考答案:由题意,没有重复数字的偶数,则末位是2或4,当末位是时,前三位将,,三个数字任意排列,则有种排法,末位为时一样有种,两类共有:种,故共有没有重复数字的偶数个。13.已知平面向量,满足,,,则在方向上的投影是
.参考答案:14.如图,在中,,,,则=___________.
参考答案:略15.已知函数满足:①对任意,恒有;②当时,.则
;方程的最小正数解为
.参考答案:,
略16.若在区间[0,1]上存在实数x使2x(3x+a)<1成立,则a的取值范围是
.参考答案:(﹣∞,1)考点:函数恒成立问题.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:2x(3x+a)<1可化为a<2﹣x﹣3x,则在区间[0,1]上存在实数x使2x(3x+a)<1成立,等价于a<(2﹣x﹣3x)max,利用函数的单调性可求最值.解答: 解:2x(3x+a)<1可化为a<2﹣x﹣3x,则在区间[0,1]上存在实数x使2x(3x+a)<1成立,等价于a<(2﹣x﹣3x)max,而2﹣x﹣3x在[0,1]上单调递减,∴2﹣x﹣3x的最大值为20﹣0=1,∴a<1,故a的取值范围是(﹣∞,1),故答案为:(﹣∞,1).点评:该题考查函数恒成立问题,考查转化思想,注意“存在”与“恒成立”问题的区别与联系是解题关键.17.抛物线的准线经过双曲线的一个焦点,则双曲线的离心率为
参考答案:
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)如图,在三棱锥中,,,,点在平面内的射影在上。(Ⅰ)求直线与平面所成的角的大小;(Ⅱ)求二面角的大小。命题立意:本题主要考查本题主要考查直线与平面的位置关系,线面角的概念,二面角的概念等基础知识,考查空间想象能力,利用向量解决立体几何问题的能力.参考答案:19.已知函数f(x)=(x2﹣3x+3)?ex,设t>﹣2,f(﹣2)=m,f(t)=n.(1)试确定t的取值范围,使得函数f(x)在[﹣2,t]上为单调函数;(2)试判断m,n的大小并说明理由;(3)求证:对于任意的t>﹣2,总存在x0∈(﹣2,t),满足,并确定这样的x0的个数.参考答案:解:(1)因为f′(x)=(2x﹣3)ex+(x2﹣3x+3)ex,由f′(x)>0?x>1或x<0,由f′(x)<0?0<x<1,∴函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,要使函数f(x)在[﹣2,t]上为单调函数,则﹣2<t≤0,(2)因为函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,所以f(x)在x=1处取得极小值e,又f(﹣2)=13e﹣2<e,所以f(x)在[2,+∞)上的最小值为f(﹣2),从而当t>﹣2时,f(﹣2)<f(t),即m<n,(3)证:∵,∴,即为x02﹣x0=,令g(x)=x2﹣x﹣,从而问题转化为证明方程g(x)==0在(﹣2,t)上有解并讨论解的个数,因为g(﹣2)=6﹣(t﹣1)2=﹣,g(t)=t(t﹣1)﹣=,所以当t>4或﹣2<t<1时,g(﹣2)?g(t)<0,所以g(x)=0在(﹣2,t)上有解,且只有一解,当1<t<4时,g(﹣2)>0且g(t)>0,但由于g(0)=﹣<0,所以g(x)=0在(﹣2,t)上有解,且有两解,当t=1时,g(x)=x2﹣x=0,解得x=0或1,所以g(x)=0在(﹣2,t)上有且只有一解,当t=4时,g(x)=x2﹣x﹣6=0,所以g(x)=0在(﹣2,t)上也有且只有一解,综上所述,对于任意的t>﹣2,总存在x0∈(﹣2,t),满足,且当t≥4或﹣2<t≤1时,有唯一的x0适合题意,当1<t<4时,有两个x0适合题意考点:利用导数求闭区间上函数的最值;根的存在性及根的个数判断;利用导数研究函数的单调性;利用导数研究函数的极值.专题:综合题.分析:(Ⅰ)首先求出函数的导数,然后根据导数与函数单调区间的关系确定t的取值范围,(Ⅱ)运用函数的极小值进行证明,(Ⅲ)首先对关系式进行化简,然后利用根与系数的关系进行判定.解答:解:(1)因为f′(x)=(2x﹣3)ex+(x2﹣3x+3)ex,由f′(x)>0?x>1或x<0,由f′(x)<0?0<x<1,∴函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,要使函数f(x)在[﹣2,t]上为单调函数,则﹣2<t≤0,(2)因为函数f(x)在(﹣∞,0),(1,+∞)上单调递增,在(0,1)上单调递减,所以f(x)在x=1处取得极小值e,又f(﹣2)=13e﹣2<e,所以f(x)在[2,+∞)上的最小值为f(﹣2),从而当t>﹣2时,f(﹣2)<f(t),即m<n,(3)证:∵,∴,即为x02﹣x0=,令g(x)=x2﹣x﹣,从而问题转化为证明方程g(x)==0在(﹣2,t)上有解并讨论解的个数,因为g(﹣2)=6﹣(t﹣1)2=﹣,g(t)=t(t﹣1)﹣=,所以当t>4或﹣2<t<1时,g(﹣2)?g(t)<0,所以g(x)=0在(﹣2,t)上有解,且只有一解,当1<t<4时,g(﹣2)>0且g(t)>0,但由于g(0)=﹣<0,所以g(x)=0在(﹣2,t)上有解,且有两解,当t=1时,g(x)=x2﹣x=0,解得x=0或1,所以g(x)=0在(﹣2,t)上有且只有一解,当t=4时,g(x)=x2﹣x﹣6=0,所以g(x)=0在(﹣2,t)上也有且只有一解,综上所述,对于任意的t>﹣2,总存在x0∈(﹣2,t),满足,且当t≥4或﹣2<t≤1时,有唯一的x0适合题意,当1<t<4时,有两个x0适合题意.点评:本题以函数为载体,考查利用导数确定函数的单调性,考查函数的极值,同时考查了方程解的个数问题,综合性强,尤其第(3)问能力要求比较高.20.已知函数
(I)若曲线在点处的切线与直线垂直,求a的值;
(II)求函数的单调区间;参考答案:解:(I)函数,
又曲线处的切线与直线垂直,
所以
即a=1.
(II)由于 当时,对于在定义域上恒成立, 即上是增函数. 当 当单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论