版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章:绪论1.细胞生物学的任务是什么?它的范围都包括哪些?
1)任务:
细胞生物学的任务是以细胞为着眼点,与其他学科的重要概念兼容并蓄,来说明生物各级结构层次生命现象的本质。
2)范围:
(1)细胞的细微结构;
(2)细胞分子水平上的结构;
(3)大分子结构变化与细胞生理活动的关系及分子解剖。
2.细胞生物学在生命科学中所处的地位,以及它与其他学科的关系1〕地位:以细胞作为生命活动的根本单位,探索生命活动规律,核心问题是将遗传与发育在细胞水平上的结合。2〕关系:应用现代物理学与化学的技术成就和分子生物学的概念与方法,研究生命现象及其规律。3.“一切生物学问题的答案最终要到细胞中去寻找〞。
1)细胞是一切生物体的最根本的结构和功能单位。
2)所谓生命实质上即是细胞属性的表达。生物体的一切生命现象,如生长、发育、繁殖、遗传、分化、代谢和激应等都是细胞这个根本单位的活动表达。
3)生物科学,如生理学、解剖学、遗传学、免疫学、胚胎学、组织学、发育生物学、分子生物学等,其研究的最终目的都是要从细胞水平上来说明各自研究领域中生命现象的机理。
4)现代生物学各个分支学科的交叉集合是21世纪生命科学的开展趋势,也要求各个学科都要到细胞中去探索生命现象的奥秘。
5)鉴于细胞在生命界中所具有的独特属性,生物科学各分支学科假设要研究各种生命现象的机理,都必须以细胞这个生物体的根本结构和功能单位为研究目标,从细胞中研究各自研究领域中生命现象的机理。4.细胞生物学主要研究内容是什么?1〕细胞核、染色体以及基因表达2〕生物膜与细胞器3〕细胞骨架体系4〕细胞增殖及其调控5〕细胞分化及其调控6〕细胞的衰老与凋亡7〕细胞起源与进化8〕细胞工程5.当前细胞生物学研究中的根本问题以及细胞根本生命活动研究的重大课题是什么?研究的三个根本性问题:1〕细胞内的基因是如何在时间与空间上有序表达的问题2〕基因表达的产物――结构蛋白与核酸、脂质、多糖及其复合物,如何逐级装配行使生命活动的根本结构体系及各种细胞器的问题3〕基因表达的产物――大量活性因子与信号分子,如何调节细胞最重要的生命活动的问题生命活动研究的重大课题:1〕染色体DNA与蛋白质相互作用关系――非组蛋白对基因组的作用2〕细胞增殖、分化、凋亡〔程序性死亡〕的相互关系及其调控3〕细胞信号转导――细胞间信号传递;受体与信号跨膜转导;细胞内信号传递4〕细胞结构体系的装配6.你认为是谁首先发现了细胞?
1)荷兰学者A.vanLeeuwenhoek,而不是R.Hooke。
2)1665年,R.Hooke利用自制的显微镜发现了细胞是由许多微小的空洞组成的,Hooke观察到的并不是真正的细胞,而是死去的植物的细胞壁围成的空腔,不过他的发现显示出生物体中存在有更微细的结构,为后来认识细胞具有开创性的意义。4.细胞学说建立的前提条件是什么?
1)1665年,R.Hooke利用自制的显微镜发现了细胞是由许多微小的空洞组成的,显示出生物体中存在有更微细的结构,为后来认识细胞具有开创性的意义。
2)Hooke同时代的发现了许多种活细胞。
3)19世纪上半叶,随着显微镜质量的提高和切片机的创造,对细胞的认识日趋深入。学者们开始认识到生物体是由细胞构成的,于是在1838-1839年,M.Schleidon和T.Schwann在总结前人工作的根底上提出了细胞学说。
5.细胞生物学各开展阶段的主要特征是什么?
它大体上经历了细胞的发现;细胞学说的创立和细胞学的形成;细胞生物学的出现;分子细胞生物学的兴起等各主要的开展阶段。
1)细胞的发现阶段:
(1)1604年,荷兰眼睛商Z.Jansen创制了世界上第一架显微镜。
(2)英国物理学家Roberthooke(1635-1703)创造了第一架对科学研究有价值的显微镜。
(3)荷兰科学家AntonievanLeeuwenhoek1674年用自制的显微镜发现了原生动物。
2)细胞学说的创立和细胞学的形成阶段:
(1)显微镜制作技术有了明显的进步,分辨率提高到1μm以内;
(2)细胞学说创立、原生质理论提出;
(3)研究方向转移到细胞内部结构上来。
3)细胞生物学的出现:
(1)电子显微镜的创造;
(2)研究方向转移到细胞的超微结构和分子结构水平;
(3)细胞生物学诞生
4)分子细胞生物学的兴起
(1)电镜标本固定技术的改良;
(2)人们认识到细胞的各种活动与大分子的结构变化和分子间的相互作用的关系。第二章:细胞的根本知识概要1、如何理解“细胞是生命活动的根本单位〞这一概念?1〕一切有机体都有细胞构成,细胞是构成有机体的根本单位2〕细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的根本单位3〕细胞是有机体生长与发育的根底4〕细胞是遗传的根本单位,细胞具有遗传的全能性5〕没有细胞就没有完整的生命6〕细胞是多层次非线性的复杂结构体系7〕细胞是物质〔结构〕、能量与信息过程精巧结合的综合体8〕细胞是高度有序的,具有自装配与自组织能力的体系2、细胞的根本共性是什么?1〕所有的细胞外表均有由磷脂双分子层与镶嵌蛋白质构成的生物膜2〕所有的细胞都有DNA与RNA两种核酸3)所有的细胞内都有作为蛋白质合成的机器――核糖体4〕所有细胞的增殖都是一分为二的分裂方式3、为什么说病毒不是细胞?蛋白质感染子是病毒吗?
1)病毒是由一个核酸分子〔DNA或RNA〕芯和蛋白质外壳构成的,是非细胞形态的生命体,是最小、最简单的有机体。仅由一个有感染性的RNA构成的病毒,称为类病毒;仅由感染性的蛋白质构成的病毒称为朊病毒。病毒具备了复制与遗传生命活动的最根本的特征,但不具备细胞的形态结构,是不完全的生命体;病毒的主要生命活动必须在细胞内才能表现,在宿主细胞内复制增殖;病毒自身没有独立的代谢与能量转化系统,必须利用宿主细胞结构、原料、能量与酶系统进行增殖,是彻底的寄生物。因此病毒不是细胞,只是具有局部生命特征的感染物。
2)蛋白质感染子是病毒的类似物,虽不含核酸,其增殖是由于正常分子的构象发生转变造成的,这种构象异常的蛋白质分子成了致病因子,这不同于传统概念上的病毒的复制方式和传染途径,所以蛋白质感染子是病毒的类似物。4、为什么说支原体可能是最小最简单的细胞存在形式?1〕支原体能在培养基上生长2〕具有典型的细胞膜3〕一个环状双螺旋DNA是遗传信息量的载体4〕mRNA与核糖体结合为多聚核糖体,指导合成蛋白质5〕以一分为二的方式分裂繁殖6〕体积仅有细菌的十分之一,能寄生在细胞内繁殖5、说明原核细胞与真核细胞的主要差异。要点原核细胞真核细胞细胞核无膜包围,称为拟核有双层膜包围染色体形状数目组成DNA序列环状DNA分子一个基因连锁群DNA裸露或结合少量蛋白质无或很少重复序列核中的为线性DNA分子;线粒体和叶绿体中的为环状DNA分子
两个或多个基因连锁群
核DNA同组蛋白结合,线粒体和叶绿体中的DNA裸露有重复序列基因表达RNA和蛋白质在同一区间合成RNA在核中合成和加工;蛋白质在细胞质中合成细胞分裂二分或出芽有丝分裂或减数分裂内膜无独立的内膜有,分化成细胞器细胞骨架无普遍存在呼吸作用和光合作用酶的分部质膜线粒体和叶绿体〔植物〕核糖体70S〔50S+30S〕80S〔60S+40S〕第三章:细胞生物学研究方法1.透射电镜与普通光学显微镜的成像原理有何异同?
透射电镜与光学显微镜的成像原理根本一样,不同的是:
1)透射电镜用电子束作光源,用电磁场作透镜,
2)光学显微镜用可见光或紫外光作光源,以光学玻璃为透镜。
2.放射自显影技术的原理根据是什么?为何常用H3、C14、P32标记物做放射自显影?
1)原理根据:
放射性同位素发射出的各种射线具有使照相乳胶中的溴化银晶体复原〔感光〕的性能。利用放射性物质使照相乳胶膜感光,再经显影以显示该物质自身的存在部位.
2)用H3、C14、P32标记物做放射自显影原因:
(1)有机大分子均含有碳、氢原子,DNA和RNA等物质中存在磷元素,
(2)且C14和H3均为弱β放射性同位素,半衰期长。
4.何谓免疫荧光技术?可自发荧光的细胞物质是否可在普通显微镜下看到荧光?
1)免疫荧光技术是将免疫学方法(抗体同特定抗原专一结合)与荧光标记技术相结合用来研究特异蛋白抗原在细胞内分布、对抗原进行定位测定的技术。它主要包括荧光抗体的制备、标本的处理、免疫染色和观察记录等过程。
2)不能。首先,荧光是因一定波长〔能量〕的光〔一般为紫外光〕照射到物体后瞬间产生的,作为普通显微镜光源的可见光,其能量缺乏以使物体产生荧光;其次,所产生荧光的波长要比入射光的要长,即使可以激发出荧光,肉眼也看不到。
5.超速离心技术的主要用途有哪些?
1)制备和纯化亚细胞成分和大分子,即制备样品;
2)分析和测定制剂中的大分子的种类和性质如浮力密度和分子量。
6.细胞融合有那几种方法?病毒诱导与PEG的作用机制有何不同?
1)细胞融合的方法有四种:病毒法、聚乙二醇〔PEG〕法、电激和激光法。
2)病毒诱导:是先足够数量的紫外灭活的病毒颗粒黏附在细胞膜上起搭桥作用,使细胞黏着成堆,细胞紧密靠近,同时细胞膜发生了一定的变化,在37℃7、为什么说细胞培养是细胞生物学研究的最根本的技术之一?细胞培养的理论依据是细胞全能性,是生命科学的研究根底,是细胞工程乃至基因工程的应用根底。植物细胞的培养为植物育种开辟了一条崭新的途径;动物细胞培养为疫苗的生产、药物的研制与肿瘤防治提供全新的手段;特别是干细胞的培养与定向分化的技术的开展,有可能在体外构建组织甚至器官,由此建立组织工程,同时在细胞治疗及其基因治疗相结合的应用中显示出诱人的前景。第四章:细胞膜与细胞外表1、生物膜的根本结构特征是什么?这些特征与它的生理功能有什么联系?膜的流动性:生物膜的根本特征之一,细胞进行生命活动的必要条件。1〕膜脂的流动性主要由脂分子本身的性质决定的,脂肪酸链越短,不饱和程度越高,膜脂的流动性越大。温度对膜脂的运动有明显的影响。在细菌和动物细胞中常通过增加不饱和脂肪酸的含量来调节膜脂的相变温度以维持膜脂的流动性。在动物细胞中,胆固醇对膜的流动性起重要的双向调节作用。²膜蛋白的流动:荧光抗体免疫标记实验;成斑现象(patching)或成帽现象(capping)2〕膜的流动性受多种因素影响:细胞骨架不但影响膜蛋白的运动,也影响其周围的膜脂的流动。膜蛋白与膜分子的相互作用也是影响膜流动性的重要因素。3〕膜的流动性与生命活动关系:信息传递;各种生化反响;发育不同时期膜的流动性不同膜的不对称性:膜脂与糖脂的不对称性:糖脂仅存在于质膜的ES面,是完成其生理功能的结构根底膜蛋白与糖蛋白的不对称性:膜蛋白的不对称性是指每种膜蛋白分子在细胞膜上都具有明确的方向性;糖蛋白糖残基均分布在质膜的ES面;膜蛋白的不对称性是生物膜完成复杂的在时间与空间上有序的各种生理功能的保证。2、膜的流动镶嵌模型是怎样形成的?它在膜生物学研究中有什么开创意义?
1)形成的原因及前提:
(1)单位膜模型无法满意的解释许多膜属性,如膜结构不断地发生动态变化;各种膜没有一成不变的统一性;各种膜均具有各自的特定厚度,提取膜蛋白的难易程度不同;各种膜的蛋白质与脂类的成份比率不同等。
(2)本世纪60年代,新技术的创造和应用,对质膜的认识越来越深入。
(3)利用冷冻蚀刻法显示出膜上有球形颗粒,
(4)用示踪法说明膜的结构形态在不断地发生变动。
在此根底上,S.J.Singer和G.L.Nicolson在1972年提出了膜的流动镶嵌模型(fluidmosaicmodel)。
2)意义:流动镶嵌模型除了强调脂类分子与蛋白质分子的镶嵌关系外,还强调了膜的流动性,主张膜总是处于流动变化之中,脂类分子和蛋白质分子均可做侧向流动。后来有许多实验结果支持了流动镶嵌模型的观点。3、质膜在细胞生命活动中都有哪些重要作用?1〕为细胞的生命活动提供相对稳定的内环境;2〕选择性的物质运输,包括代谢底物的输入与代谢产物的排除,其中伴随着能量的传递;3〕提供细胞识别位点,并完成细胞内外信息跨膜传递;4〕为多种酶提供结合位点,使酶促反响高效而有序地进行;5〕介导细胞与细胞、细胞与基质之间的连接;6〕质膜参与形成具有不同功能的细胞外表特化结构。4、质膜的膜蛋白都有哪些类别?各有何功能?膜脂有哪几种?
1)膜蛋白根据功能的不同,可将分为四类:运输蛋白,连接蛋白,受体蛋白和酶。
运输蛋白:物质运输,与周围环境进行物质和能量的交换;
连接蛋白:细胞连接;
受体蛋白:细胞识别,信号传递;
酶:具有催化活性。
2)膜脂:膜脂主要为磷脂和胆固醇,磷脂主要包括有卵磷脂和脑磷脂(cephalin),鞘脂〔带有一个氨基〕和糖脂〔结合有寡糖链〕。5、何谓细胞外被?它有哪些功能?
1)细胞外被是指动物细胞外表的由构成质膜的糖蛋白和糖脂伸出的寡糖链组成的厚约10~20nm的绒絮状结构。
2)功能:(1)细胞识别;(2)血型抗原;(3)酶活性。6、细胞外表有哪几种常见的特化结构?膜骨架的根本结构与功能是什么?1〕细胞外表特化结构主要包括:膜骨架、鞭毛、纤毛、变形足和微绒毛,都是细胞膜与膜内的细胞骨架纤维形成的复合结构,分别与维持细胞的形态、细胞的运动、细胞与环境的物质交换等功能有关。2〕膜骨架:指细胞质膜下与膜蛋白相连的由纤维蛋白组成的网架结构,其功能是维持细胞质膜的形状并协助质膜完成多种生理功能。7、细胞连接都有哪些类型?各有何结构特点?
细胞连接按其功能分为:紧密连接,锚定连接,通讯连接。
1)紧密连接〔封闭连接〕,细胞质膜上,紧密连接蛋白(门蛋白)形成分支的链索条,与相邻的细胞质膜上的链索条对应结合,将细胞间隙封闭。
2)锚定连接:通过中间纤维〔桥粒、半桥粒〕或微丝〔粘着带和粘着斑〕将相邻细胞或细胞与基质连接在一起,以形成坚挺有序的细胞群体、组织与器官。3)通讯连接:包括间隙连接和化学突触,是通过在细胞之间的代谢偶联、信号传导等过程中起重要作用的连接方式。
4)胞间连丝连接:是高等植物细胞之间通过胞间连丝来进行物质交换与互相联系的连接方式。8、细胞外基质与细胞外被有何区别?它们如何相互作用?
1)细胞外被是指动物细胞外表的由构成质膜的糖蛋白和糖脂伸出的寡糖链组成的厚约10~20nm的绒絮状结构,是细胞膜的一局部。
2)细胞外基质是存在细胞之间的非细胞性的物质,是由一些蛋白质和多糖大分子构成的精密有序的网络结构,是细胞的分泌物在细胞附近构成的精密结构,它不同于细胞外被之处是,通过与细胞质膜中的细胞外基质受体结合,同细胞建立了相互关系。9、细胞外基质组成、分子结构及生物学功能是什么?
1)细胞外基质〔EM〕成分可表示如下:
多糖:糖胺聚糖,蛋白聚糖
纤维蛋白:胶原,弹性蛋白,纤连蛋白,层粘连蛋白;
2)作用:细胞外基质可影响细胞的发育、极性和行为活动。
(1)糖胺聚糖〔GAG〕链构成的网络,形成了水化凝胶,各种蛋白质纤维埋藏于凝胶之中。GAG多糖链带负电荷,同蛋白质共价结合形成蛋白聚糖。
(2)蛋白聚糖:
a.渗滤作用;
b.细胞外表的辅受体;
c.调节分泌蛋白的活性;
d.细胞间化学信号传递。
(3)胶原,弹性蛋白:结构作用
(4)纤连蛋白,层粘连蛋白:黏着作用。
10、胶原纤维的装配过程都经过哪些步骤?
胶原纤维是经多步过程装配而成,包括胶原分子的合成、分泌和修饰等步骤。
1)内质网膜结合的核糖体上合成胶原分子的多肽链,最初合成的多肽链为前体肽链,称为前α链(pro-αchain)。
2)合成的前体肽链进入内质网腔,此前体链除在氨基端带有信号肽序列外,在氨基端和羧基端尚带有称为前肽(propeptides)的氨基酸序列。在内质网腔中,前肽链中的脯氨酸和赖氨酸残基分别被羟化为羟脯氨酸和羟赖氨酸。每一条前α链与其它两条前α链通过由羟基形成的氢键相互结合,构成了3股螺旋的前胶原(procollagen)分子。此分子的装配起始于内质网,后经高尔基体装配完成,被包装到分泌泡中,分泌到细胞外。
3)前胶原被分泌到细胞外之后,前肽序列被专一的蛋白质水解酶切除,前胶原转变成了胶原分子。
4)胶原分子在细胞外又进一步装配成了胶原原纤维,最后后者又装配成了胶原纤维。原纤维一旦形成,胶原分子便通过在赖氨酸间的共价结合,加固了原纤维的结构。这种结合要依赖于原纤维结合胶原(fibril-associatedcollagen)〔如IX型和II型胶原分子〕的参与。
11、纤连蛋白分子有哪些结构特点?如何发挥作用?
1)分子是由两个亚基组成的二聚体,在靠近羧基端有一对二硫键将两个亚基连在一起,使两个亚基排成“V〞字形。亚基多肽链折叠成5-6个棒状和球形功能区,各功能区分别可同特定的分子或细胞发生转移结合,功能区之间的连接部位可折屈,对蛋白酶敏感。
2)多肽链含有三种重复序列,即I、II、III型组件,功能区即是由这三种组件重复组合而成。在III型重复中含有特异的三肽序列,-Arg-Gly-Asp-(RGD),此RGD序列可被细胞外表基质受体中的整联蛋白(integrin)所识别,从而同细胞结合,促使细胞同基质结合。促进细胞迁移,对细胞的迁移有导向作用第五章物质的跨膜运输与信号传递1、物质跨膜运输有哪几种方式?它们的异同点。
跨膜运输:直接进行跨膜转运的物质运输,又分为简单扩散、协助扩散和主动运输。
1)简单扩散:顺物质电化学梯度,不需要膜运输蛋白,利用自身的电化学梯度势能,不耗细胞代谢能;
2)协助扩散:顺物质电化学梯度,需要通道蛋白或载体蛋白,利用自身的电化学梯度势能,不耗细胞代谢能;
3)主动运输:逆物质电化学梯度,需要载体蛋白,消耗细胞代谢能。2、比拟主动运输与被动运输的特点及其生物学意义。1〕主动运输的特点及其生物学意义:特点:由载体蛋白所介导的物质逆浓度梯度或电化学梯度由浓度低的一侧向浓度高的一侧进行跨膜转运。需要与某种释放能量的过程相偶联。类型:由ATP直接提供能量〔Na+-K+泵、Ca2+泵、〕、间接提供能量〔Na+-K+泵或H+泵、载体蛋白的协同运输〕、光驱动的三种类型。生物学意义:动物细胞借助Na+-K+泵维持细胞渗透平衡,同时利用胞外高浓度的Na+所储存的能量,主动从细胞外摄取营养;植物细胞、真菌〔包括酵母〕和细菌细胞借助膜上的H+泵,将H+泵出细胞,建立跨膜的H+电化学梯度,利用H+电化学梯度来驱动主动转运溶质进入细胞;Ca2+泵主要存在于细胞膜和内质网膜上,将Ca2+输出细胞或泵入内质网腔中储存,以维持细胞内低浓度的游离Ca2+,Ca2+对调节肌细胞的收缩与舒张至关重要。2〕被动运输的特点及其生物学意义:特点:物质的跨膜运输的方向是由高浓度向低浓度,运输动力来自物质的浓度梯度,不需要细胞提供代谢能量。类型:单扩散和载体介导的协助扩散。协助扩散的载体为:载体蛋白和通道蛋白,载体蛋白既可介导被动运输和主动运输;通道蛋白只能介导被动运输。生物学意义:每种载体蛋白能与特定的溶质分子结合,通过一系列构象改变介导溶质分子的跨膜转运;通道蛋白是屡次跨膜亲水、离子通道,充许适宜大小分子和带电荷的离子通过,其显著特点为:⑴具有离子选择性,转运速率高,净驱动力是溶质跨膜的电化学梯度;⑵离子通道是门控的,其活性是由通道开或关两种构象所调节,通过通道开关应答于适当地信号。3、说明Na+-K+泵的工作原理及其生物学意义。Na+-K+泵是一种典型的主动运输方式,由ATP直接提供能量。Na+-K+泵存在于细胞膜上,是由α和β二个亚基组成的跨膜屡次的整合膜蛋白,具有ATP酶活性。工作原理:在细胞内侧α亚基与Na+相结合促进ATP水解,α亚基上的天门冬氨酸残基磷酸化引起α亚基构象发生变化,将Na+泵出细胞,同时细胞外的K+与α亚基的另一位点结合,使其去磷酸化,α亚基构象再度发生变化将K+泵进细胞,完成整个循环。Na+依赖的磷酸化和K+依赖的去磷酸化引起构象变化有序交替进行。每个循环消耗一个ATP分子,泵出3个Na+和泵进2个K+。生物学意义:动物细胞借助Na+-K+泵维持细胞渗透平衡,同时利用胞外高浓度的Na+所储存的能量,主动从细胞外摄取营养。4、动物细胞、植物细胞和原生动物细胞应付低渗膨胀的机制有何不同?动物细胞借助Na+-K+泵维持细胞内低浓度溶质;植物细胞依靠坚韧的细胞壁防止膨胀和破裂;原生动物通过收缩胞定时排出进入细胞过量的水而防止膨胀。5、比拟胞饮作用和吞噬作用的异同。胞饮和吞噬是细胞胞吞作用的两种类型。胞饮作用是一个连续发生的过程,所有真核细胞都能通过胞饮作用连续摄入溶质和分子;吞噬作用首先需要被吞噬物与细胞外表结合并激活细胞外表受体,是一个信号触发过程。胞饮泡的形成需要网格蛋白、结合素蛋白和结合蛋白等的帮助;吞噬泡的形成那么需要微丝及其结合蛋白的帮助,在多细胞动物体内,只有某些特化细胞具有吞噬功能。6、比拟组成型胞吐途径和调节型胞吐途径的特点及其生物学意义。细胞的胞吐作用是将细胞内的分泌泡或其他某些膜泡中的物质通过细胞质膜运出细胞的过程。特点:1〕真核细胞从高尔基体反面管网区分泌的囊泡向质膜流动并与之融合的稳定过程即组成型的胞吐途径。通过连续性的组成型胞吐途径:⑴细胞新合成的囊泡膜的蛋白和脂类不断地供给质膜更新,以确保细胞分裂前质膜的生长;⑵囊泡内可溶性蛋白分泌到细胞外,成为质膜外围蛋白、胞外基质组分、营养成分或信号分子等。2〕特化的分泌细胞调节型胞吐途径存在于特殊机能的细胞中,分泌细胞产生的分泌物〔激素、粘液或消化酶〕储存在分泌泡内,当细胞在受到胞外信号刺激时,分泌泡与质膜融合并将内含物释放出去。生物学意义:细胞的质膜更新,维持细胞的生存与生长。7、质膜在细胞吞吐作用(cytosis)中起什么作用?
1)识别被内吞物质;
2)形成陷穴小泡;
3)包围细胞外物质,形成小泡;脱离质膜,进入细胞内部;
4)同细胞质中的小泡融合,把其所含的物质吐到细胞外。8、试述细胞以哪些方式进行通讯?各种方式之间有何不同?细胞通讯是指一个细胞发出的信息通过介质传递到另一个细胞产生相应的反响。1〕细胞的通讯方式细胞以三种方式进行通讯:⑴细胞通过分泌化学信号进行细胞间相互通讯,这是多细胞生物包括动植物最普遍采用的通讯方式;⑵细胞间接触性依赖的通讯,细胞间直接接触,通过与质膜结合的信号分子影响其他细胞;⑶细胞间形成间隙连接使细胞质相互沟通,通过交换小分子来实现代谢偶联或电偶联。2〕细胞通讯方式之间不同点⑴通过细胞分泌化学信号的通讯方式:细胞间的通讯需要细胞分泌化学信号;⑵细胞接触性依赖的通讯方式:细胞间直接接触,不需要分泌的化学信号分子的释放,是通过与质膜结合的信号分子与其相接触的靶细胞质膜上的受体分子相结合,影响其他细胞。⑶细胞间隙连接的通讯方式:细胞间通过孔隙交换小分子实现代谢偶联或电偶联。9、细胞有哪几种方式通过分泌化学信号进行细胞间相互通讯?内分泌:由内分泌细胞分泌信号分子〔激素〕到血液中,通过血液循环运送到体内各个部位,作用于靶细胞;旁分泌:细胞通过分泌局部化学介质到细胞外液中,经过局部扩散作用于邻近靶细胞,对创伤或感染组织刺激细胞增殖以恢复功能具有重要意义;自分泌:细胞对自身分泌的物质产生反响,常见于病理如肿瘤细胞的合成和释放生长因子刺激自身,导致肿瘤细胞的增殖失控;通过化学突触传递神经信号:当神经元细胞在接受环境或其他神经细胞的刺激后,神经信号通过动作电位的形式沿轴突以高达100m/s的速度传至末梢,刺激突触前突起终末分泌化学信号〔神经递质或神经肽〕,快速扩散,实现电信号-化学信号-电信号转换和传导。10、何谓信号传递中的分子开关蛋白?举例说明其作用机制。分子开关蛋白的概念:具有可逆磷酸化控制的蛋白激酶称为分子开关蛋白。分子开关的蛋白有两类:1〕通过磷酸化传递信号的开关蛋白:其活性由蛋白激酶使之磷酸化而开启,由蛋白磷酸酯酶使之去磷酸化而关闭;2〕通过结合蛋白传递信号的分子开关蛋白:由GTP结合蛋白组成,结合GTP而活化,结合GDP而失活。作用机制:如NO〔包内第二信使分子〕在导致血管平滑肌舒张中的作用机制,即NO导致靶细胞内的可溶性鸟苷酸活化,血管内皮细胞释放NO,应答神经终末的刺激,NO扩散进入靶细胞与靶蛋白结合,快速导致血管平滑肌的舒张,从而引起血管扩张、血流畅通。11、简要说明G蛋白偶联受体介导的信号通路有何特点。G蛋白偶联受体所介导信号通路主要包括cAMP信号通路和磷脂酰肌醇信号通路。cAMP信号通路:细胞外信号〔激素,第一信使〕与相应G蛋白偶联的受体结合,导致细胞内第二信使cAMP的水平变化而引起细胞反响的信号通路。腺苷环化酶调节胞内cAMP的水平,cAMP被磷酸二酯酶限制型降解去除。其反响链为:激素→G-蛋白偶联受体→G-蛋白→腺苷酸环化酶→cAMP→cAMP依赖的蛋白激酶A→基因调控蛋白→基因转录。磷脂酰肌醇信号通路:通过G蛋白偶联受体介导的磷脂酰肌醇信号通路的信号转导是通过效应酶磷酸酯酶C〔PLC〕完成的,是双信使系统〞反响链。“双信使系统〞反响链:胞外信号分子→G-蛋白偶联受体→G-蛋白→ →IP3〔三磷酸肌醇〕→胞内Ca2+浓度升高→Ca2+结合蛋白(CaM)→细胞反响磷脂酶C(PLC){→DG〔二酰基甘油〕→激活PKC〔DC激活蛋白激酶C〕→蛋白磷酸化或促Na+/H+交换使胞内pH升高12、说明胞内信号传递级联反响链传递信号的原理。基因表达如何通过信号传递受到调控?
1)原理
(1)靶细胞的受体与配体的专一结合,受体同信号分子结合后被激活,把细胞外信号转变为胞内信号。
(2)经过一系列信号传递蛋白:
可被蛋白质激酶磷酸化的蛋白质:一类是丝氨酸/苏氨酸激酶,可催化蛋白质中的丝氨酸和苏氨酸磷酸化;另一类是酪氨酸激酶,催化蛋白质中的酪氨酸磷酸化。这两类蛋白质受到激活时,获得了1至多个磷酸基,失活时又去磷酸基。这些蛋白质被激活,那么可致使磷酸化级联反响链(phosphorylationcascade)中的下游蛋白质磷酸化。
在信号诱导下同GTP结合的蛋白质。
(3)信号被传递到核,影响专一基因的表达。
2)调控
细胞一般是受多种信号的刺激影响,细胞必须把一些分散的信号加以整合,才能产生特有的反响。细胞外信号可激活细胞中的多种蛋白质磷酸化级联反响链,这些级联反响链之间发生相互作用,最终影响基因的表达,引起了一定的生物效应。13、概述受体酪氨酸激酶介导的信号通路的组成、特点及其主要功能。RTK-Ras信号通路:配体→RTK→adaptor←GRF→Ras→Raf〔MAPKKK〕→MAPKK→MAPK→进入细胞核→其它激酶或基因调控蛋白〔转录因子〕的磷酸化修钸。信号通路的组成:配体――生长因子;RTK—酪氨酸;接头蛋白〔生长因子受体接头蛋白-2,GRB-2〕;GRF--鸟苷酸释放因子;Ras—GTP结合蛋白;Raf――是丝氨酸/苏氨酸〔Ser/Thr〕蛋白激酶〔称MAPKKK〕。主要功能:调节细胞的增殖与分化,促进细胞存活,以及细胞代谢过程中的调节与校正。第六章:细胞质基质与细胞内膜系统1、细胞质基质的结构组分及其在细胞生命活动中作用的理解。基质的根本概念:用差速离心法别离细胞匀浆物组分,先后除去细胞核、线粒体、溶酶体、高尔基体和细胞质膜等细胞器或细胞结构后,存留在上清液中的主要是细胞质基质的成分。生物化学家多称之为胞质溶胶。主要成分:中间代谢有关的数千种酶类、细胞质骨架结构。主要特点:细胞质基质是一个高度有序的体系;通过弱键而相互作用处于动态平衡的结构体系,细胞骨架纤维贯穿其中。多数中间代谢反响及蛋白质合成与转运、某些蛋白质的修饰和选择性地降解等过程均在细胞质基质中进行。其作用为:1〕完成各种中间代谢过程,如糖酵解过程、磷酸戊糖途径、糖醛酸途径等2〕蛋白质的分选与运输3〕与细胞质骨架相关的功能――维持细胞形态、细胞运动、胞内物质运输及能量传递等4〕蛋白质的修饰、蛋白质选择性的降解⑴蛋白质的修饰;⑵控制蛋白质的寿命;⑶降解变性和错误折叠的蛋白质;⑷帮助变性或错误折叠的蛋白质重新折叠,形成正确的分子构象。2、内膜系统包括哪几局部?系统的依据是什么?
细胞内膜系统是指细胞内在结构、功能及发生上相关的由膜包绕形成的细胞器或细胞结构。1)它主要包括核膜、内质网和高尔基复合体三大局部,质膜、溶酶体和分泌泡均可看作是它的衍生物。线粒体和叶绿体不属于内膜系统。
2)依据:核膜、内质网和高尔基复合体结构和功能上是连续的,在形成上具有一定的序列相关性;内膜之间通过出芽和融合的方式进行交流。
3、比拟粗面内质网和光面内质网的形态结构与功能。ER是细胞内蛋白质与脂类合成的基地,几乎全部脂类和多种重要蛋白都是在内质网合成的。形态结构:rER多呈扁囊状,排列较为整齐,在其膜外表分布大量核糖体。功能:蛋白质合成;蛋白质的修饰与加工;新生肽的折叠与组装;脂类的合成。sER常为分支管状,形成较为复杂的立体结构,在其膜的外表没有核糖体。功能:类固醇激素的合成〔生殖腺内分泌细胞和肾上腺皮质〕;肝的解毒作用;肝细胞葡萄糖的释放〔G-6PG〕;储存钙离子:肌质网膜上的Ca2+-ATP酶将细胞质基质中Ca2+泵入肌质网腔中4、细胞内蛋白质合成部位及其去向如何?1〕部位:细胞内蛋白质都是在核糖体上合成的,并都是起始于细胞质基质中“游离〞核糖体。2〕去向:向细胞外分泌蛋白;膜的整合膜蛋白;内膜系统各种细胞器内的可溶性蛋白〔需要隔离或修饰〕。其它的多肽是在细胞质基质中“游离〞核糖体上合成的:包括细胞质基质中的驻留蛋白、质膜外周蛋白、核输入蛋白、转运到线粒体、叶绿体和过氧物酶体的蛋白。5、糙面内质网上合成哪几类蛋白质?它们在内质网上合成的生物学意义又是什么?1〕糙面内质网上合成的蛋白质主要是分泌性蛋白、膜蛋白及内质网、高尔基体和溶酶体中的蛋白。2〕生物学意义在于:多肽的糖基化及其折叠与装配发生在内质网中,而肽键上的信号序列决定多肽在细胞质中的合成部位,并最终决定成熟蛋白的去向。6、指导分泌性蛋白在糙面内质网上合成需要哪些主要结构或因子?它们如何协同作用完成肽链在内质网上合成?1〕需要的结构或因子:胰腺细胞分泌的酶、浆细胞分泌的抗体、小肠杯状细胞分泌的粘蛋白、内分泌腺分泌的多肽类激素、胞外基质成分等。2〕协同作用:分泌性蛋白N端序列作为信号肽,指导分泌性蛋白到内质网膜上合成,在蛋白质合成结束之前信号肽被切除。只有N端信号序列而没有停止序列的多肽,合成后进入内质网腔中;停止转移序列位于多肽分子的中部,合成后最终成为跨膜蛋白;含多个起始转移序列和多个停止转移序列的多肽会成为屡次跨膜的膜蛋白。7、结合高尔基体的结构特征,谈谈它是怎样行使其生理功能的?1)结构特征:
高尔基复合体由成摞的囊泡叠置而成。。囊泡的边缘局部连接有许多大小不等的外表光滑的小管网,其周围还存在有衣被小泡和无被小泡。一个成摞存在的囊泡又称为分散高尔基体,由5~8层囊泡组成,构成了高尔基复合体的主体结构。
分散高尔基体在结构和生化成分上具有极性,和内质网临近的近核一侧,囊泡弯曲呈凸面,称为形成面或顺面;在远核的一侧,囊泡呈凹面,称为成熟面或反面。从顺面到反面,囊泡膜的厚度逐渐增大。
2)功能:
(1)形成和包装分泌物;
(2)蛋白质和脂类的糖基化;
(3)蛋白质的加工改造;
(4)细胞内的膜泡运输;
(5)膜的转化。
高尔基复合体在内膜系统中处于中介地位,它在对细胞内合成物质的修饰和改造中具有重作用。许多重要大分子的运输和分泌都要通过高尔基复合体。
8、蛋白质的糖基化的根本类型、特征及生物学意义是什么?蛋白质的糖基化在糖基转移酶〔glycosyltransferase〕作用下发生在ER腔面1〕根本类型:N-连接糖基化〔Asn〕;O-氧连接糖基化〔Ser/Thr〕2〕特征:N-连接与O-连接的寡糖比拟类型特征N-连接O-连接1.合成部位2.合成方式3.与之结合的4.最终长度5.第一个糖残基粗面内质网来自同一个寡糖前体天冬酰胺至少5个糖残基N—乙酰葡萄粗面内质网或高尔基体一个个单糖加上去丝氨酸、苏氨酸、羟赖氨酸、羟脯氨酸一般1~4个糖残基,但ABO血型抗原较长N—乙酰半乳糖胺等3)蛋白质糖基化的特点及其生物学意义⑴糖蛋白寡糖链的合成与加工都没有模板,靠不同的酶在细胞不同间隔中经历复杂的加工过程才能完成。⑵糖基化的主要作用是蛋白质在成熟过程中折叠成正确构象和增加蛋白质的稳定性;多羟基糖侧链影响蛋白质的水溶性及蛋白质所带电荷的性质。对多数分选的蛋白质来说,糖基化并非作为蛋白质的分选信号。⑶进化上的意义:寡糖链具有一定的刚性,从而限制了其它大分子接近细胞外表的膜蛋白,这就可能使真核细胞的祖先具有一个保护性的外被,同时又不象细胞壁那样限制细胞的形状与运动。9.糙面内质网和光面内质网在细胞的生命活动中各自承当了什么样的角色?
1)糙面内质网:
(1)蛋白质的合成;
(2)合成蛋白质的修饰与加工;
(3)膜的生成;
(4)物质的运输;
(5)贮积钙离子。
2)光面内质网:
(1)脂类的合成;
(2)解毒作用;
(3)糖原代谢。
10.糙面内质网上所进行的糖基化的机制如何?其添加的寡糖链又有什么特点?
1)糖基化的机制
(1)Asn;N-连接;
(2)寡糖链已预先合成;
(3)以焦磷酸键连在跨膜的磷酸多萜醇上;
(4)新生肽链一旦出现Asn残基,糖基转移酶以焦磷酸键的能量将寡糖链从磷酸多萜醇上转移至多肽链的Asn残基上;
2)添加的寡糖链特点:寡糖链可分为两局部,一局部称为核心区,该区在各种寡糖链中均是相同的,且与天冬酰胺残基直接相连的第一个糖总是N-乙酰葡萄糖胺;另一局部称为末端区,该区在各种寡糖链中是不同的;
11.在高尔基复合体上所进行的糖基化与内质网有何不同?
1)不同:在糙面内质网上进行的糖基化修饰大多为N-连接的糖基化,寡糖链与天冬酰胺的氨基基团相连,在内质网上添加上的寡糖链可分为两局部,一局部称为核心区,该区在各种寡糖链中均是相同的,且与天冬酰胺残基直接相连的第一个糖总是N-乙酰葡萄糖胺;另一局部称为末端区,该区在各种寡糖链中是不同的。在高尔基复合体上进行的糖基化主要是O-连接的糖基化,寡糖链与丝氨酸、苏氨酸和羟赖氨酸的羟基基团相连,加工修饰只发生在寡糖链的末端区,核心区保持不变。
12.高尔基复合体在蛋白质的加工、分拣、膜泡运输和膜转化中各承当了什么样的角色?其间的关系又如何?
1)高尔基复合体是蛋白质的加工、分拣的细胞器之一,与内膜系统的其它成分共同参与了膜泡运输和膜转化。
2)内质网的特定区域形成的有被小泡,将所合成的正确折叠和正确组装的蛋白质运往高尔基复合体进行加工、修饰,根据蛋白质所带有的分拣信号,反面高尔基网络对蛋白质分拣,将不同命运的蛋白质分拣开来,并经膜泡运输将其运输至其靶部位。在膜泡运输过程中完成了膜的转化。
13.高尔基复合体各部囊泡在组化反响上的差异,说明了一个什么问题?与其生物学功能之间又有什么关系?
1)利用专一性标记酶和组织化学方法的研究结果说明,高尔基池中含有许多加工寡糖链的酶,包括甘露糖转移酶、N-乙酰半乳糖转移酶、N-乙酰葡萄糖胺转移酶、岩藻糖转移酶、半乳糖转移酶以及唾液酸转移酶;处于不同部位的高尔基池所含有的糖基转移酶的种类不同:
(1)形成面的池含有使甘露糖和N-乙酰半乳糖糖基化酶,
(2)中部区域的池含有向寡糖链上转接N-乙酰葡萄糖胺的酶,
(3)成熟面的池那么含有向寡糖链上移接唾液酸、半乳糖和岩藻糖的酶。
2)这些糖基转移酶的作用是把寡糖转移到蛋白质上,形成糖蛋白,从而可以看出,高尔基复合体的各部囊泡在功能上高度分区化,处于不同部位的高尔基囊泡所含有的加工寡糖链的糖基转移酶的种类不同,因此,从形成面到成熟面的囊泡是按照一定顺序对寡糖链进行加工的。先参与对寡糖链加工的酶位置偏向于顺面,而后参与加工的酶偏向于反面。这种顺序性加工可能有利于糖蛋白的分拣,从而使高尔基复合体能对不同的糖蛋白进行分别包装,使其具有不同的命运。特征溶酶体微体〔过氧化物酶体〕形态大小直径0.2~0.5μm,无酶晶体直径0.15~0.25μm,有酶晶体酶的种类酸性水解酶氧化酶类pH值~5~7需氧与否不需要需要功能细胞内消化主要与糖异生有关发生酶在RER上合成,经高尔基复合体出芽形成酶在细胞质基质中合成,经分裂和组装形成识别的标志酶酸性水解酶过氧化氢酶14、溶酶体是怎样发生的?它有哪些根本功能?1〕发生途径:溶酶体的合成及N-连接的糖基化修饰〔在rER〕高尔基体cis膜囊寡糖链上的甘露糖残基磷酸化N-乙酰葡萄糖胺磷酸转移酶磷酸葡萄糖苷酶M6P磷酸化识别信号:信号斑高尔基体trans-膜囊和TGN膜〔M6P受体〕溶酶体酶分选与局部浓缩以出芽的方式转运到前溶酶体2〕根本功能⑴去除无用的生物大分子、衰老的细胞器及衰老损伤和死亡的细胞,防御功能〔病原体感染刺激单核细胞分化成巨噬细胞而吞噬、消化〕⑵作为细胞内的消化“器官〞为细胞提供营养;⑶分泌腺细胞中,溶酶体摄入分泌颗粒参与分泌过程的调节⑷参与去除赘生组织或退行性变化的细胞;⑸受精过程中的精子的顶体〔acrosome〕反响。 15、溶酶体一旦发生异常,会引起什么样的疾病?各对机体又有什么影响呢?
1)贮积病:溶酶体酶缺失和异常时,某些物质不能被消化降解,而遗留在溶酶体内,便会影响细胞的代谢功能,引发疾病(贮积病),甚至导致机体的死亡
2)类风湿关节炎(rheumatoidarthritis):该种病人的溶酶体膜的脆性增加,溶酶体酶被释放到关节处的细胞间质中,使骨组织受到侵蚀,引起炎症。16、过氧化物酶体与溶酶体有哪些区别?怎样理解过氧化物酶体是异质性的细胞器?1〕区别:过氧化物酶体和初级溶酶体的形态与大小类似,但过氧化物酶体中的尿酸氧化酶等常形成晶格状结构,可作为电镜下识别的主要特征。2〕异质性:在不同生物细胞中以及单细胞生物的不同个体中的溶酶体,所含酶的种类及其行使的功能都有所不同,因此说过氧化物酶体是异质性的细胞器。16、过氧化物酶体的功能是什么?
细胞中过氧化物酶体的功能:
1)是细胞内糖、脂和氮的重要代谢部位。
2)参与了长链脂肪酸的降解,乙醚磷脂和胆汁酸的生物合成,胆固醇、多胺、草酸盐、植烷酸、二羧酸以及几种药物等的代谢转换。
3)在植物细胞中,过氧化物酶体是乙醇酸氧化的场所。17、微体〔过氧化物酶体〕与溶酶体有何异同点?异同点:
(1)相同点:由一层单位膜膜包围;为一类异质性细胞器。
(2)不同点:18、何谓蛋白质的分选?膜泡运输有哪几种类型及其特点?1〕蛋白质分选概念:蛋白质在细胞质基质中开始合成,在细胞质基质中或运至糙面内质网上继续合成,然后通过不同途径转运到细胞的特定部位,这一过程称为蛋白质的分选或定向运转。2〕膜泡运输的类型及其特点:⑴网格蛋白有被小泡的运输,负责蛋白质从高尔基体TGN向质膜、胞内体或溶酶体和植物液泡运输。从TGN区出芽并由网格蛋白包被形成转运泡。⑵COPⅡ有被小泡的运输,负责从内质网到高尔基体的物质运输。由5种蛋白亚基组成的蛋白包被COPⅡ小泡,具有对转运物质的选择性并使之浓缩。选择性表达在a.COPⅡ小泡能识别并结合跨膜内质网胞质面一端的信号序列;b.跨膜内质网蛋白的一端作为受体与ER腔的可溶性蛋白结合。⑶COPⅠ有被小泡的运输,负责回收、转运内质网逃逸蛋白返回内质网。逃逸的内质网蛋白的回收是通过回收信号介导的特异性受体完成,这类受体能以COPⅠ有被小泡的形式捕获逃逸分子,并将其回收到内质网。19、怎样理解细胞结构装配的生物学意义?细胞结构装配的方式:自我装配〔self-assembly〕、协助装配〔aided-assembly〕、直接装配〔direct-assembly〕、复合物与细胞结构体系的组装。生物学意义:1〕减少和校正蛋白质合成中出现错误;2〕可大大减少所需要的遗传物质信息量;3〕通过装配与去装配更容易调节与控制多种生物学过程。分子“伴侣〞〔molecularchaperones〕概念:细胞中的某些蛋白质分子可以识别正在合成的多肽或局部折叠的多肽并与多肽的某些部位相结合,从而帮助这些多肽转运、折叠或装配,这一类分子本身并不参与最终产物的形成,因此称为分子“伴侣〞。第七章:细胞的能量转换――线粒体和叶绿体1、为什么说线粒体和叶绿体是细胞内的两种产能细胞器?线粒体和叶绿体都是高效的产生ATP的精密装置。尽管它们最初的能量来源不同,但却有着相似的根本结构,而且以类似的方式合成ATP。ATP是细胞生命活动的直接供能者,也是细胞内能量的获得、转换、储存和利用等环节的联系纽带。2、线粒体的各局部结构分别与哪些代谢反响有关?
1)内膜
(1)细胞凋亡:线粒体作为起始的主开关,可以开启内膜上的非特异性通道-线粒体通透性转变孔(mitochondrialpermeabilitytransitionpore,mtPTP)
(2)电子传递和氧化磷酸化:电子传递链和氧化磷酸化的酶存在于内膜中;
2)基质
(1)三羧酸循环:参与三羧酸循环、脂肪酸氧化和丙酮酸氧化的酶存在于线粒体基质中
(2)储积钙离子:基质中的致密颗粒状物质与储积Ca2+有关
(3)细胞凋亡:在线粒体膜间隙中鉴定出了多种死亡促进因子,包括细胞色素c、凋亡诱导因子和被称为切冬酶的潜伏蛋白酶。3、试比拟线粒体与叶绿体在根本结构方面的异同。1〕根本结构的相同点:线粒体和叶绿体的形态、大小、数量与分布常因细胞种类、生理功能及生理状况不同而有较大差异。两者均具有封闭的两层单位膜,内膜向内折叠,并演化为极大扩增的内膜特化结构系统。2〕不同点:线粒体外膜(outermembrane〕含孔蛋白(porin),通透性较高;内膜〔innermembrane〕高度不通透性,向内折叠形成嵴〔cristae〕;含有与能量转换相关的蛋白;膜间隙〔intermembranespace〕含许多可溶性酶、底物及辅助因子;基质〔matrix〕含三羧酸循环酶系、线粒体基因,表达酶系等以及线粒体DNA,RNA,核糖体。叶绿体内膜并不向内折叠成嵴;内膜不含电子传递链;除了膜间隙、基质外,还有类囊体;捕光系统、电子传递链和ATP合成酶都位于类囊体膜上。4、如何测定线粒体的呼吸链各组分在内膜上的排列分布?
利用氧化复原电位的上下测试呼吸链中各组分在内膜上的排列顺序和方向。即各组分在内膜呼吸链上的顺序与其得失电子的趋势有关,电子总是从低氧化复原电位向高氧化复原电位流动。氧化复原电位值愈低的组分供电子的倾向愈大,愈易成为复原剂而处于传递链的前面。在线粒体内膜呼吸链电子传递过程中,电子是按氧化复原电位从低向高传递。NAD+/NADH的氧化复原电位值最低〔E0=-0.32V〕,O2/H2O的氧化复原电位值最高〔E0=+0.82V〕。
5、RuBP羧化酶有何功能?它是有哪些亚基组成的?各有何基因组编码?功能:核酮糖-1,5-二磷酸〔RuBP〕是光合作用中一个起重要作用的酶系统,是叶绿体卡尔文循环羧化阶段中CO2的接受体,在RuBP羧化酶的催化下,CO2与RuBP反响形成2分子3-磷酸甘油酸〔PGA〕。组成亚基:RuBP羧化酶有8个大亚基和8个小亚基组成,其中每个大亚基的相对分子质量约为53×103,小亚基的相对分子质量约为14×103。酶的活性中心位于大亚基上,小亚基只具有调节功能。编码基因组:RuBP羧化酶的大亚基是由叶绿体基因组编码,在基质中合成。而小亚基那么是由核基因组编码,在细胞质基质中合成。6、试比拟线粒体的氧化磷酸化与叶绿体的光合磷酸化的异同点。〔P232〕1〕相同点:线粒体的氧化磷酸化与叶绿体的光合磷酸化中,⑴需要完整的膜;⑵ATP的形成都是由H+移动所推动;⑶叶绿体的CF1因子与线粒体的F1因子都具有催化ADP和Pi形成ATP的作用。2〕不同点:线粒体的氧化磷酸化是在内膜上进行的一个形成ATP的过程。它是在电子从NADH或FADH2经过电子传递链传递给的过程中发生的。每一个NADH被氧化产生3个ATP分子,而每一FADH2被氧化产生2个ATP分子,电子最终被O2接收而生成H2O。即:1对电子的3次穿膜传递,将基质中的3对H+抽提到膜间隙中,每2个H+穿过F1-F0ATP酶,生成1个ATP分子。叶绿体的光合磷酸化是在类囊体膜上进行的,是由光引起的光化学反响,其产物是ATP和NADPH;碳同化〔暗反响,在叶绿体基质中进行〕利用光反响产生的ATP合NADPH的化学能,使CO2复原合成糖。光合作用的电子传递是在光系统Ⅰ和光系统Ⅱ中进行的,这两个光系统互相配合,利用所吸收的光能把1对电子从H2O传递给NADP+。即:1对电子的2次穿膜传递,在基质中摄取3个H+,在类囊体腔中产生4个H+,每3个H+穿过CF1-CF0ATP酶,生成1个ATP分子。7、如何证明线粒体的电子传递和磷酸化作用是由两个不同结构系统来实现的?〔P212〕用胰蛋白酶或尿素处理亚线粒体小泡,那么小泡外面的颗粒解离,无颗粒的小泡只能进行电子传递,而不能使ADP磷酸化生成ATP。将颗粒重新装配到无颗粒的小泡上时,那么有颗粒的小泡又恢复了电子传递和磷酸化相偶联的能力。8、光系统、捕光复合物和作用中心的结构与功能的关系如何?〔P224〕在叶绿体的类囊体膜中镶嵌有大小、数量不同的颗粒,集中了光合作用能量转换功能的全部组分,包括:捕光色素〔天线色素〕、两个光反响中心、各种电子载体、合成ATP的系统和从水中抽取电子的系统等。它们分别装配在PSI、PSⅡ、细胞色素bf、CF0-CF1ATP酶等主要的膜蛋白复合物中。PSI和PSⅡ复合物都是由核心复合物和捕光复合物组成,但它们在组分、结构甚至功能上是不同的。PSⅡ的核心复合物是由20多个不同的多肽组成的叶绿素蛋白复合体,其反响中心多肽是蛋白D1和D2;PSI的核心复合物的反响中心是一个包含多种不同复原中心的多蛋白复合体;CF0-CF1ATP酶是由跨膜的H+通道CF0和在类囊体膜基质侧起催化作用的CF1两局部所组成;在亚基组分、结构和功能上均与线粒体的ATP合成酶相似,但叶绿体的CF1地激活需有-SH基化合物,寡霉素对CF1无抑制作用。9、氧化磷酸化偶联机制的化学渗透假说的主要论点是什么?有哪些证据?化学渗透假说主要论点:电子传递链各组分在线粒体内膜中不对称分布,当高能电子沿其传递时,所释放的能量将H+从基质泵到膜间隙,形成H+电化学梯度。在这个梯度驱使下,H+穿过ATP合成酶回到基质,同时合成ATP,电化学梯度中蕴藏的能量储存到ATP高能磷酸键。实验证据:质子动力势乃ATP合成的动力;膜应具有完整性;电子传递与ATP合成是两件相关而又不同的事件。10、由核基因组编码、在细胞质核糖体上合成的蛋白质是如何运送至线粒体和叶绿体的功能部位上进行更新或装配的?〔P238,240〕由核基因组编码、在细胞质核糖体上合成,⑴定位于线粒体基质中的蛋白,其导肽的N端带正电荷,含有导向基质的信息,在跨膜转运时,首先在细胞质Hsp70〔分子伴侣〕的参与下解折叠为伸展状态,然后与膜受体结合并在接触点处通过线粒体膜进入基质,其导肽即被基质中的蛋白水解,成为成熟的蛋白质;⑵定位于线粒体内膜或膜间隙的蛋白,是其在“伴侣分子〞引导的导肽进入基质后进一步在伴侣分子的引导下进入〔或定位〕线粒体膜或膜间隙;⑶定位于叶绿体基质中的蛋白,其前体蛋白(在细胞质中合成的)N端的转运肽仅具有导向基质的序列,引导其穿过叶绿体膜进入基质,由基质中特异的蛋白水解酶切去转运肽成为成熟蛋白质;⑷定位于叶绿体类囊体中蛋白,其前体蛋白N端的转运肽有两个区域,分别引导两步转运,其N端含有导向基质的序列,引导其穿过叶绿体膜上由孔蛋白形成的通道进入基质;而C端含有导向类囊体的序列又引导其穿过类囊体膜,进入类囊体腔,因此,它的转运肽经历两次水解,一次在基质内,另一次在类囊体腔中;不是由转运肽决定的,是成熟的捕光色素蛋白在其C端的跨膜区域类囊体导向序列〔信号〕引导多肽进入类囊腔中形成成熟蛋白。11、试比拟光合碳同化三条途径的主要异同点。1〕C3途径〔卡尔文循环〕:是靠光反响合成的ATP及NADPH作能源,推动CO2的固定、复原。每循环一次只能固定一个CO2分子,循环六次才能把6个CO2分子同化成一个己糖分子。2〕C4途径:在叶脉周围有一圈含叶绿体的维管束鞘细胞,其外环列的叶肉细胞,在这两种细胞密切配合下不管CO2浓度的上下状态,对CO2净固定,这类植物积累干物质的速度快,为高产型植物。3〕CAM途径〔景天科酸代谢〕:肉质植物的叶片,气孔白天关闭,夜间开放。夜间吸收CO2,在PEPC〔磷酸烯醇式丙酮酸羧化酶〕催化下与PEP〔磷酸烯醇式丙酮酸〕结合,生产草酰乙酸,进一步复原为苹果酸;白天CO2从储存的苹果酸中经氧化脱羧释放出来,参与C3〔卡尔文〕循环,形成淀粉。CAM途径与C4途径相似,只是CO2固定与光合作用产物的生成,在时间及空间上与C4途径不同。12、为什么说线粒体和叶绿体是半自主性细胞器?
1)线粒体和叶绿体都有环状的DNA,都拥有合成蛋白质的整套装置;
2)两者的DNA都能进行复制,但复制仍受核基因组的控制。mtDNA是由核DNA编码、在细胞质中合成的。组成叶绿体的各种蛋白质成分是由核DNA和叶绿体DNA分别编码,只有少局部蛋白质是由叶绿体DNA编码的。
3)线粒体、叶绿体的生长和增殖是受核基因组和其本身的基因组两套遗传系统的共同控制,因而,它们被称为是半自主性的细胞器。13、简述线粒体与叶绿体的内共生起源学说和非共生起源学说的主要论点及其实验证据。1〕内共生起源学说论点:叶绿体起源于细胞内共生的蓝藻,其祖先是原核生物的蓝细菌〔Cyanobacteria〕,即蓝藻;线粒体的祖先-原线粒体是一种革兰氏阴性细菌。主要论据:⑴基因组在大小、形态和结构方面与细菌相似;⑵有自己完整的蛋白质合成系统,能独立合成蛋白质,蛋白质合成机制有很多类似细菌而不同于真核生物。⑶两层被膜有不同的进化来源,外膜与细胞的内膜系统相似,内膜与细菌质膜相似。⑷以分裂的方式进行繁殖,与细菌的繁殖方式相同。⑸能在异源细胞内长期生存,说明线粒体和叶绿体具有的自主性与共生性的特征。⑹线粒体的祖先很可能来自反硝化副球菌或紫色非硫光合细菌。⑺发现介于胞内共生蓝藻与叶绿体之间的结构--蓝小体,其特征在很多方面可作为原始蓝藻向叶绿体演化的佐证。2〕非共生起源学说论点:真核细胞的前身是一个进化上比拟高等的好氧细菌。解释了真核细胞核被膜的形成与演化的渐进过程。⑴实验证据不多⑵无法解释为何线粒体、叶绿体与细菌在DNA分子结构和蛋白质合成性能上有那么多相似之处⑶对线粒体和叶绿体的DNA酶、RNA酶和核糖体的来源也很难解释。⑷真核细胞的细胞核能否起源于细菌的核区?14、线粒体与细胞凋亡有何关系?它是如何参与并启动细胞进入死亡程序的?
1)线粒体与细胞凋亡有何关系:线粒体作为起始凋亡的主开关,可以开启内膜上的非特异性通道-线粒体通透性转变孔,在调控细胞凋亡中还具有重要作用。
2)死亡信号诱导下,线粒体过量摄取钙离子,降低了线粒体的产能,加剧了其氧化压力,使线粒体通透性转变孔(mtPTP)开启;PT孔的开启解除了内膜的氢离子浓度梯度,导致呼吸链解偶联,同时,基质空间扩张,外膜胀破。膜间隙中细胞色素c、凋亡诱导因子〔AIF〕被释放;细胞色素c是切冬梅的激活蛋白,从而激活切冬梅的蛋白降解途径,引起细胞结构的破坏;AIF释放后进入细胞核,使染色质凝缩并造成DNA的大规模片断化,进而使细胞死亡。第八章:细胞核与染色体1、概述细胞核的根本结构及其主要功能。1〕核被膜〔包括核孔复合体〕:外核膜,附有核糖体颗粒;内核膜,有特有的蛋白成份〔如核纤层蛋白B受体〕;核纤层;核周间隙、核孔〔nuclearpore〕。其功能为:构成核、质之间的天然选择性屏障;防止生命活动的彼此干扰;保护DNA不受细胞骨架运动所产生的机械力的损伤;核质之间的物质交换与信息交流。2〕染色质:指间期细胞核内由DNA、组蛋白、非组蛋白及少量RNA组成的线性复合结构,是间期细胞遗传物质存在的形式;染色体(chromosome),指细胞在有丝分裂或减数分裂过程中,由染色质聚缩而成的棒状结构。⑴染色质与染色体是在细胞周期不同的功能阶段可以相互转变的的形态结构⑵染色质与染色体具有根本相同的化学组成,但包装程度不同,构象不同。3〕核仁:纤维中心(fibrillarcenters,FC)、致密纤维组分(densefibrillarcomponent,DFC)、颗粒组分(granularcomponent,GC)、核仁相随染色质(nucleolarassociatedchromatin)、核仁基质〔(nucleolarmatrix)。其功能为:核糖体的生物发生(ribosomebiogenesis),包括rRNA的合成、加工和核糖体亚单位的装配;rRNA基因转录;rRNA前体的加工。4〕核基质或核骨架(nuclearskeleton):{包括核基质、核纤层(或核纤层-核孔复合体结构体系),以及染色体骨架。};核骨架是存在于真核细胞核内真实的结构体系;核骨架与核纤层、中间纤维相互连接形成贯穿于核与质的一个独立结构系统;核骨架的主要成分是由非组蛋白的纤维蛋白构成的,含有多种蛋白成分及少量RNA;核骨架与DNA复制、基因表达及染色体的包装与构建有密切关系。2、试述核孔复合体的结构及其功能。核孔复合体结构包括:胞质环〔cytoplasmicring〕、外环、核质环〔nuclearring〕、内环、辐〔spoke〕、柱状亚单位〔columnsubunit〕、腔内亚单位(luminalsubunit)、环带亚单位〔annularsubunit〕、中央栓〔centralplug〕。其功能为:核质交换的双向性亲水通道;通过核孔复合体的主动运输;亲核蛋白与核定位信号;亲核蛋白入核转运;转录产物RNA的核输出。3、概述染色质的类型及其特征。染色质的根本概念:1〕染色质〔chromatin〕的概念:指间期细胞核内由DNA、组蛋白、非组蛋白及少量RNA组成的线性复合结构,是间期细胞遗传物质存在的形式。2〕染色体(chromosome)的概念:指细胞在有丝分裂或减数分裂过程中,由染色质聚缩而成的棒状结构。3〕染色质与染色体是在细胞周期不同的功能阶段可以相互转变的的形态结构;染色质与染色体具有根本相同的化学组成,但包装程度不同,构象不同。根本类型:常染色质(euchromatin)1〕概念:指间期核内染色质纤维折叠压缩程度低,处于伸展状态〔典型包装率750倍〕,用碱性染料染色时着色浅的那些染色质。2〕特征:DNA包装比约为1000~2000分之一;单一序列DNA和中度重复序列DNA(如组蛋白基因和tRNA基因);并非所有基因都具有转录活性,常染色质状态只是基因转录的必要条件而非充分条件异染色质(heterochromatin)1〕概念:碱性染料染色时着色较深的染色质组分。2〕类型:结构异染色质〔或组成型异染色质〕(constitutiveheterochromatin)、兼性异染色质(facultativeheterochromatin);结构异染色质或组成型异染色质,除复制期以外,在整个细胞周期均处于聚缩状态,形成多个染色中心。3〕结构异染色质特征:①在中期染色体上多定位于着丝粒区、端粒、次缢痕及染色体臂的某些节段;②由相对简单、高度重复的DNA序列构成,如卫星DNA;③具有显著的遗传惰性,不转录也不编码蛋白质;④在复制行为上与常染色质相比表现为晚复制早聚缩;⑤在功能上参与染色质高级结构的形成,导致染色质区间性,作为核DNA的转座元件,引起遗传变异。4〕兼性异染色质特征:在某些细胞类型或一定的发育阶段,原来的常染色质聚缩,并丧失基因转录活性,变为异染色质,如X染色体随机失活;异染色质化可能是关闭基因活性的一种途径。4、比拟组蛋白与非组蛋白的特点及其作用。组蛋白(histone)1〕核小体组蛋白(nucleosomalhistone):H2B、H2A、H3和H4,帮助DNA卷曲形成核小体的稳定结构2〕H1组蛋白:在构成核小体时H1起连接作用,它赋予染色质以极性。3〕特点:真核生物染色体的根本结构蛋白,富含带正电荷的Arg和Lys等碱性氨基酸,属碱性蛋白质,可以和酸性的DNA紧密结合〔非特异性结合〕;没有种属及组织特异性,在进化上十分保守。非组蛋白1〕非组蛋白具多样性和异质性2〕对DNA具有识别特异性,又称序列特异性DNA结合蛋白(sequencespecificDNAbindingproteins)3〕具有多种功能,包括基因表达的调控和染色质高级结构的形成。4〕非组蛋白的不同结构模式:α螺旋-转角-α螺旋模式(helix-turn-helixmotif);锌指模式(Zincfingermotif);亮氨酸拉链模式(Leucinezippermotif,ZIP);螺旋-环-螺旋结构模式(helix-loop-helixmotif,HLH);HMG-盒结构模式〔HMG-boxmotif〕。5、试述核小体的结构要点及其实验证据。结构要点:1〕每个核小体单位包括200bp左右的DNA超螺旋和一个组蛋白八聚体及一个分子H1;2〕组蛋白八聚体构成核小体的盘状核心结构;3〕146bp的DNA分子超螺旋盘绕组蛋白八聚体圈,组蛋白H1在核心颗粒外结合额外20bpDNA,锁住核小体DNA的进出端,起稳定核小体的作用。包括组蛋白H1和166bpDNA的核小体结构又称染色质小体;4〕两个相邻核小体之间以连接DNA相连,典型长度60bp,不同物种变化值为0~80bp;5〕组蛋白与DNA之间的相互作用主要是结构性的,根本不依赖于核苷酸的特异序列,实验说明,核小体具有自组装〔self-assemble〕的性质;6〕核小体沿DNA的定位受不同因素的影响,进而通过核小体相位改变影响基因表达。主要实验证据:
1〕铺展染色质的电镜观察:未经处理的染色质自然结构为30nm的纤丝,经盐溶液处理后解聚的染色质呈现10nm串珠状结构
;2〕用非特异性微球菌核酸酶消化染色质,局部酶解片段分析结果;3〕应用X射线衍射、中子散射和电镜三维重建技术研究,发现核小体颗粒是直径为11nm、高的扁园柱体,具有二分对称性〔dyadsymmetry〕,核心组蛋白的构成是先形成〔H3〕2﹒〔H4〕2四聚体,然后再与两个H2A﹒H2B异二聚体结合形成八聚体;4〕SV40微小染色体〔minichromosome〕分析与电镜观察。6、试述从DNA到染色体的包装过程。从DNA到染色体经过四级包装过程:一级结构,核小体二级结构,螺线管(solenoid)三级结构,超螺线管(supersolenoid)四级结构,染色单体〔chromatid〕 即:DNA—压缩7倍—→核小体—压缩6倍—→螺线管—压缩40倍—→超螺线管—压缩5倍—→染色单体经过四级螺旋包装形成的染色体结构,共压缩了8400倍。7、分析中期染色体的三种功能元件及其作用。1〕自主复制DNA序列(autonomouslyreplicatingDNAsequence,ARS):具有一段11-14bp的同源性很高的富含AT的共有序列及其上下游各200bp左右的区域是维持ARS功能所必需的。2〕着丝粒DNA序列(centromereDNAsequence,CEN):两个相邻的核心区,80-90bp的AT区,11bp的保守区。3〕端粒DNA序列(telomereDNAsequence,TEL):端粒序列的复制,端粒酶,在生殖细胞和局部干细胞中有端粒酶活性,端粒重复序列的长度与细胞分裂次数和细胞衰老有关。8、概述核仁的结构及其功能。1〕结构:纤维中心(fibrillarcenters,FC),是rRNA基因的储存位点;致密纤维组分(densefibrillarcomponent,DFC),转录主要发生在FC与DFC的交界处,并加工初始转录本;颗粒组分(granularcomponent,GC),负责装配核糖体亚单位,是核糖体亚单位成熟和储存的位点;核仁相随染色质(nucleolarassociatedchromatin)与核仁基质〔(nucleolarmatrix)。2〕功能:是核糖体的生物发生场所,是一个向量过程(vetoricalprocess),即:从核仁纤维组分开始,再向颗粒组分延续。这一过程包括rRNA的合成、加工和核糖体亚单位的装配;rRNA基因转录的形态及其组织;rRNA前体的加工;核糖体亚单位的组装。9、概述活性染色质主要特点。1〕概念:活性染色质(activechromatin)是具有转录活性的染色质。活性染色质的核小体发生构象改变,形成疏松的染色质结构,从而便于转录调控因子与顺式调控元件结合和RNA聚合酶在转录模板上滑动。2〕主要特征:⑴活性染色质具有DNaseI超敏感位点〔DNaseIhypersensitivesite,DHS〕,无核小体的DNA片段,敏感位点通常位于5‘-启动子区,长度几百bp;⑵活性染色质在生化上具有特殊性,很少有组蛋白H1与其结合,组蛋白乙酰化程度高,核小体组蛋白H2B很少被磷酸化,核小体组蛋白H2A在许多物种很少有变异形式,HMG14和HMG17只存在于活性染色质中。10、试述染色质结构与基因转录的关系。1〕疏松染色质结构的形成⑴DNA局部结构的改变与核小体相位的影响:当调控蛋白与染色质DNA的特定位点结合时,染色质易被引发二级结构的改变,进而引起其它的一些结合位点与调控蛋白的结合;核小体通常定位在DNA特殊位点而利于转录。〔a〕基因的关键调控元件被留在核心颗粒外面,从而有利于结合转录因子;〔b〕位于DNA上调控元件被盘绕在核心组蛋白上,因为组蛋白,使DNA上的关键调控元件靠得很近,它们可以通过转录因子而联系。⑵DNA甲基化:A/C甲基化/去甲基化〔特别是5-mC〕。⑶组蛋白的修饰:组蛋白的修饰改变染色质的结构,直接或间接影响转录活性〔磷酸化、甲基化、乙酰化,泛素化〔uH2A〕//Arg,His,Lys,Ser,Thr〕;组蛋白赖氨酸残基乙酰基化〔acetylation〕,影响转录。⑷HMG结构域蛋白等染色质变构因子的影响:HMG结构域可识别某些异型的DNA结构,与DNA弯折和DNA-蛋白质复合体高级结构的形成有关。2〕染色质的区间性⑴基因座控制区〔locuscontrolregion,LCR〕:染色体DNA上一种顺式作用元件,具有稳定染色质疏松结构的功能;与多种反式因子的结合序列可保证DNA复制时与启动子结合的因子仍保持在原位。⑵隔离子〔insulator〕:防止处于阻遏状态与活化状态的染色质结构域之间的结构特点向两侧扩展的染色质DNA序列,称为隔离子;作用:作为异染色质定向形成的起始位点;提供拓扑隔离区染色质模板的转录。3〕基因转录的模板不是裸露的DNA,染色质是否处于活化状态是决定转录功能的关键。4〕转录的“核小体犁〞〔nucleosomeplow〕假说。第九章:核糖体1、以80S核糖体为例,说明核糖体的结构成分及其功能。核糖体是一种没有被膜包裹的颗粒状结构,其主要成分:核糖体外表r蛋白质40%,核糖体内部rRNA60%。80S的核糖体普遍存在于真核细胞内,由60S大亚单位与40S小亚单位组成,60S大亚单位相对分子质量为3200×103,40S小亚单位的相对分子质量为1600×103。小亚单位中含有18S的rRNA分子,相对分子质量为900×103,含有33种r蛋白;大亚单位中含有一个28S的rRNA分子,相对分子质量为1600×103,含有49种r蛋白。核糖体大小亚单位常游离于胞质中,只有当小亚单位与mRNA结合后大亚单位才与小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025计算机软件买卖合同
- 母线槽采购合同范例
- 已经签好合同范例
- 石材 销售合同范例
- 山西公司商业合同范例
- 铜仁幼儿师范高等专科学校《战略管理双语》2023-2024学年第一学期期末试卷
- 铜仁幼儿师范高等专科学校《建筑经济》2023-2024学年第一学期期末试卷
- 完整版100以内加减法混合运算4000道140
- 铜陵学院《机器视觉检测技术》2023-2024学年第一学期期末试卷
- 阳江广东阳江阳春市引进中学校长历年参考题库(频考版)含答案解析
- 【MOOC】中学化学教学设计与实践-北京师范大学 中国大学慕课MOOC答案
- GB 15930-2024建筑通风和排烟系统用防火阀门
- 山东师范大学《学术研究与论文写作》2021-2022学年第一学期期末试卷
- 2022-2023学年北京市通州区高二(上)期末地理试卷
- 2024年度VR虚拟现实内容创作合同
- 幼儿园社会教育专题-形考任务二-国开(FJ)-参考资料
- 第五单元有趣的立体图形 (单元测试)-2024-2025学年一年级上册数学 北师大版
- 2024年湖南公务员考试申论试题(省市卷)
- 设备基础(土建)施工方案
- 义乌房地产市场月报2024年08月
- 部编 2024版历史七年级上册期末(全册)复习卷(后附答案及解析)
评论
0/150
提交评论