生物启发式优化方法及其在管理中的应用_第1页
生物启发式优化方法及其在管理中的应用_第2页
生物启发式优化方法及其在管理中的应用_第3页
生物启发式优化方法及其在管理中的应用_第4页
生物启发式优化方法及其在管理中的应用_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

生物启发式优化方法及其在管理中的应用第1页/共62页2报告内容启发式优化方法研究背景生物启发式优化方法群体智能优化方法(SI)SI算法在管理中的应用实例研究第2页/共62页3报告内容1启发式计算方法研究背景2生物启发式计算方法3群体智能优化方法(SI)4SI算法在管理中的应用5实例研究第3页/共62页4最优化问题模型启发式计算方法背景全局最优与局部最优实际生活中的优化问题第4页/共62页5经典的计算方法17世纪Newtown微积分1847年Cauchy最速下降法1947年Dantzig单纯形方法1939年Kantorovich下料问题和运输问题问题求解第5页/共62页6启发式计算方法【定义1-1】启发式算法是一种基于直观或经验构造的算法,在可接受的耗费(指计算时间、占用空间等)下给出待解决优化问题每一实例的一个可行解,该可行解与最优解的偏离程度未必可事先估计。【定义1-2】启发式算法是一种技术,该技术使得能在可接受的计算费用内去寻找尽可能好的解,但不一定能保证所得解的可行性和最优性,甚至在多数情况下,无法描述所得解与最优解的近似程度。经典的启发式方法基本原理:根据问题的部分已知信息来启发式地探索该问题的解决方案,在探索解决方案的过程中将发现的有关信息记录下来,不断积累和分析,并根据越来越丰富的已知信息来指导下一步的动作并修正以前的步骤,从而获得在整体上较好的解决方案。第6页/共62页7启发式计算方法分类物理启发式模拟退火算法(模拟固体熔化状态下由逐渐冷却至最终达到结晶状态的物理过程)量子计算(模拟量子态的叠加性和相干性以及量子比特之间的纠缠性)社会与文化启发文化算法(模拟人类社会的演化过程)人口迁移算法(模拟人口流动与人口迁移)第7页/共62页8报告内容1启发式计算方法研究背景2生物启发式计算方法3群体智能优化方法(SI)4SI算法在管理中的应用5实例研究第8页/共62页生物启发式优化方法遗传算法神经网络模糊逻辑。。。。。生物启发式计算是指以生物界的各种自然现象或过程为灵感,而提出的一系列启发式智能计算方法。第9页/共62页10遗传算法进化过程优化过程生物进化过程是一个自然,并行,稳健的优化过程,这一优化过程的目的在于使生命体达到适应环境的最佳结构与效果,而生物种群通过”

“优胜劣汰”及遗传变异来达到进化(优化)目的的。第10页/共62页11遗传算法生物的进化机制自然选择适应环境的个体具有更高的生存能力,同时染色体特征被保留下来杂交随机组合来自父代的染色体上的遗传物质,产生不同于它们父代的染色体突变随机改变父代的染色体基因结构,产生新染色体第11页/共62页12神经计算树突

突触

轴突

细胞体人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。第12页/共62页13神经计算

人工神经网络(ArtificialNeuralNetworks,ANN),一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力。INx>T?I1I2I3S第13页/共62页14模糊逻辑

是A1集结器去模糊化y规则1y是B1y是B2y是Br

是A2

是Ar规则2规则r

模糊推理系统是建立在模糊集合理论、模糊if-then规则和模糊推理等概念基础上的先进的计算框架。模糊推理系统的基本结构由三个重要部件组成:一个规则库,包含一系列模糊规则;一个数据库,定义模糊规则中用到的隶属度函数(MembershipFunctions,MF);以及一个推理机制,按照规则和所给事实执行推理过程求得合理的输出或结论。第14页/共62页15其它生物启发式计算技术进化规划算法进化编程人工免疫系统DNA计算膜计算等第15页/共62页16报告内容1启发式计算方法研究背景2生物启发式计算方法3群体智能优化方法(SI)4SI算法在管理中的应用5实例研究第16页/共62页群体智能(SwarmIntelligence)生物学家研究表明:在这些群居生物中虽然每个个体的智能不高,行为简单,也不存在集中的指挥,但由这些单个个体组成的群体,似乎在某种内在规律的作用下,却表现出异常复杂而有序的群体行为。第17页/共62页18AC第18页/共62页19AC第19页/共62页20AC第20页/共62页21轨迹更新:Visibility:

ij=1/dij蚂蚁算法表示轨迹的相对重要性表示能见度的相对重要性轨迹的持久性表示第K只蚂蚁在本次循环中留在路径ij上的信息量第21页/共62页22生物社会学家E.O.Wilson指出:“至少从理论上,在搜索食物过程中群体中个体成员可以得益于所有其他成员的发现和先前的经历。当食物源不可预测地零星分布时,这种协作带来的优势是决定性的,远大于对食物的竞争带来的劣势。”鱼群觅食模型第22页/共62页23避免碰撞速度匹配

中心聚集鸟群的飞行行为第23页/共62页24鸟群觅食模型FoodGlobalBestSolutionPastBestSolution第24页/共62页25Randomly

searchingfoods社会型行为的模拟第25页/共62页26认知行为(CognitionBehavior)先前经验26Max第26页/共62页27社会行为(SocialBehavior)Wetendtoadjustourbeliefsandattitudestoconformwiththoseofoursocialpeers.125Max人类社会系统第27页/共62页28粒子群算法介绍每个寻优的问题解都被想像成一支鸟,也称为“Particle”。所有的Particle都有一个fitnessfunction以判断目前的位置之好坏,每一个Particle具有记忆性,能记得所搜寻到最佳位置。每一个Particle还有一个速度以决定飞行的距离与方向。第28页/共62页29局部最优解全局最优解运动向量惯性向量StudyFactorHereIam!Thebest

positionofteamMybestpositionx(t)pgpivPBestgBestx(t+1)速度与位置更新第29页/共62页30算法流程Initialization

:将群族做初始化,以随机的方式求出每一Particle之初始位置与速度。Evaluation:依据fitnessfunction计算出其fitnessvalue以作为判断每一个Particle之好坏。FindPbest

:找出每一个Particle到目前为止的搜寻过程中最佳解,这个最佳解称之为Pbest。FindtheGbest:找出所有群体中的最佳解,此最佳解称之为Gbest。UpdatetheVelocityandposition:

根据速度与位置公式

更新每一Particle的速度与位置。Termination.返回步骤2继续执行,直到获得一个令人满意的结果或符合终止条件为止。第30页/共62页31参数选择粒子数:一般取20–40.其实对于大部分的问题10个粒子已经足够可以取得好的结果,不过对于比较难的问题或者特定类别的问题,粒子数可以取到100或200粒子的维数:这是由优化问题决定,就是问题解的长度粒子的范围:由优化问题决定,每一维可是设定不同的范围Vmax:最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度学习因子:c1和c2通常等于2.不过在文献中也有其他的取值.但是一般c1等于c2并且范围在0和4之间中止条件:最大循环数以及最小错误要求.

第31页/共62页32PSO与遗传算法的比较相同点都是基于种群的都需要适应度函数.都是随机计算技术

不能保证100%收敛

不同点PSO没有交叉变异等进化操作.PSO中通过粒子的竞争与协作实现种群进化粒子具有记忆能力

优点PSO容易实现具有较小的调整参数收敛速度快、解质量高、鲁棒性好

第32页/共62页33Schwefel'sfunction第33页/共62页34初始状态第34页/共62页355代后第35页/共62页3610代后第36页/共62页3715代后第37页/共62页38100代后第38页/共62页39500代后第39页/共62页40最终结果迭代次数搜寻结果0416.2455995515.74879610759.40400615793.73201920834.813763100837.9115355000837.965771最优解837.9658第40页/共62页41第41页/共62页42第42页/共62页43第43页/共62页44报告内容1启发式计算方法研究背景2生物启发式计算方法3群体智能优化方法(SI)4SI算法在管理中的应用5实例研究第44页/共62页45SI算法提供了一种求解复杂系统优化间题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于很多学科。下面是SI的一些主要应用领域:

(1)管理领域的组合优化问题随着问题规模的增大,组合优化问题的搜索空间也急剧扩大,有时在目前的计算机上用枚举法很难或甚至不可能求出其精确最优解。对这类复杂问题,人们己意识到应把主要精力放在寻求其满意解上,而SI算法是寻求这种满意解的最佳工具之一。实践证明,SI算法对于组合优化中的NP完全问题非常有效。例如,SI已经在求解旅行商问题、背包问题、装箱问题、指派问题等方面得到成功的应用。SI算法在管理中应用第45页/共62页46(2)物流与供应链管理中应用物流与供应链管理中,在很多情况下所建立起来的数学模型难以精确求解,即使经过一些简化之后可以进行求解,也会因简化得太多而使得求解结果与实际相差甚远。而目前在现实管理中也主要是靠一些经验来进行管理。现在群体智能算法已成为复杂问题的有效工具,在生产计划调度、运输问题、车辆路径调度问题、物流配送管理问题,多级库存优化控制策略,供应链需求预测优化模型研究,都得到了有效的应用.SI算法在管理中应用第46页/共62页47

(3)知识管理中的应用知识管理是企业为实现其管理目标,运用现代的管理理论和技术,对企业内部和外部知识资源进行发现,挖掘,整理,整合,并实施科学的管理和维护,将最合理的知识在最恰当的时候提供给最需要的人,以便做出最科学的决策。目前基于群体思想的方法应用于知识管理的主要方向有:客户关系管理中的客户行为聚类分析,关联分析,文档分类,属性约简.SI算法在管理中应用第47页/共62页48

(5)项目管理项目管理网络计划中的工期限定-资源均衡问题项目合作伙伴的选择问题

(4)风险管理传统的风险管理大都是凭借主观经验,采用定性的判断方法,大多数情况下只考虑信用风险最低而忽略投资投资组合理论在此过程中的重要。研究如何在各种复杂的、不确定的环境中对资产进行有效的配置,实现资产的回报最大化与所承担风险的最小化的均衡,将是SI应用研究的一个重要方向。SI算法在管理中应用第48页/共62页49报告内容1启发式计算方法研究背景2生物启发式计算方法3群体智能优化方法(SI)4SI算法在管理中的应用5实例研究第49页/共62页50配送中心选址问题

配送中心是将取货,集货,包装,仓库,装卸,分货,配货,加工,信息服务,送货等多种服务功能融为一体的物流据点。配送中心是进行物流配活动的最主要的硬件设施,所有的物流活动都是基于配送中心这个平台来进行的,它是供应链中非常重要的节点。配送中心的定位几乎决定配送业务所需要的成本和费用水平。本例研究的是多配送中心选址第50页/共62页51配送中心选址问题

物流配送总费用

从配送中心到需求点的单位费用

从配送中心到需求点运输量

在点设置配送中心的固定费用及管理费用等需求点的需求量可兴建配送中心的最多个数配送中心的容量第51页/共62页52配送中心选址模型第52页/共62页53配送中心选址模型第53页/共62页54粒子的编码

物流配送选址问题主要是在一系列需求点中确定配送中心的最佳位置,目标是使各项费用总和最小。因此对于每个需求点而言,就有两个问题是不是配送中心隶属于哪个配送中心。需求点号:1234567010230031223212:274:3465:15需求点隶属情况:第54页/共62页55约束处理第55页/共62页56算法流程初始化一群鸟,每个鸟位置向量X的每一维随机取(1-m)(配送中心数)之间的实数,每个速度向量V的每一维随机取-(m-1),(m-1)之间的整数对每个鸟进行整数规范化,计算其适应度值,将初始评价值作为个体历史最优解,并寻找全局最优值位置与速度的更新对X进行整数规范化,再更新个体与全局最好值得到终终止条件,则返回第56页/共62页57实例研究

现有一个12需求点的物流网络,要求从中选择出3个作为配送中心,使各项费用总和最小。已知在和建设配送中心的固定费用分别为

11,16,14,14,15,13,18,12,11,14,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论