版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2019届高考数学复习空间几何体的表面积与体积专题训练(含答案)在我们周围存在着各种各样的物体,它们都占据着空间的一部分,下面是空间几何体的表面积与体积专题训练,请考生及时练习。一■、选择题.棱长为2的正四面体的表面积是().A.B.4C.4D.16解析每个面的面积为:22二.正四面体的表面积为:4.答案C.把球的表面积扩大到原来的2倍,那么体积扩大到原来的().A.2倍B.2倍C.倍D.倍解析由题意知球的半径扩大到原来的倍,则体积V=R3,知体积扩大到原来的2倍.答案B.一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm2)为().A.48B.64C.80D.120解析据三视图知,该几何体是一个正四棱锥(底面边长为8),直观图如图,PE为侧面PAB的边AB上的高,且PE=5.此几何体的侧面积是S=4SPAB=485=80(cm2).答案C.已知三棱锥S-ABC的所有顶点都在球O的球面上,ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为().A.B.C.D.解析在直角三角形ASC中,AC=1,SAC=90,SC=2,5人=;同理SB二.过A点作SC的垂线交SC于D点,连接DB,因SAC^^SBC,故BDSC,故SC平面人8口,且平面ABD为等腰三角形,因ASC=30,故AD=SA二,则ABD的面积为1二,则三棱锥的体积为2二.答案A.某品牌香水瓶的三视图如下(单位:cm),则该几何体的表面积为().A.cm2B.cm2C.cm2D.cm2解析该几何体的上下为长方体,中间为圆柱.S表面积二S下长方体+S上长方体+S圆柱侧-2S圆柱底=244+442+233+431+21-22=94+.答案C.已知球的直径SC=4,A,B是该球球面上的两点,AB=,ASC=BSC=30,则棱锥SABC的体积为().A.3B.2C.D.1解析由题可知AB一定在与直径SC垂直的小圆面上,作过AB的小圆交直径SC于D,设SD=x,则DC=4-x,此时所求棱锥即分割成两个棱锥SABD和CABD,在SAD和SBD中,由已知条件可得AD二BD=x,又因为SC为直径,所以SBC=SAC=90,所以DCB=DCA=60,在BDC中,BD=(4-x),所以x=(4-x),所以x=3,AD=BD二,所以三角形ABD为正三角形,所以V=SABD4二.答案C二、填空题.已知S、A、B、C是球O表面上的点,SA平面ABC,ABBC,SA=AB=1,BC=,则球O的表面积等于.解析将三棱锥S-ABC补形成以SA、AB、BC为棱的长方体,其对角线SC为球O的直径,所以2R=SC=2,R=1,表面积为4.答案4.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是.解析由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为,连接顶点和底面中心即为高,可求得高为,所以体积V=11=.答案9.已知某几何体的直观图及三视图如图所示,三视图的轮廓均为正方形,则该几何体的表面积为.解析借助常见的正方体模型解决.由三视图知,该几何体由正方体沿面AB1D1与面CB1D1截去两个角所得,其表面由两个等边三角形、四个直角三角形和一个正方形组成.计算得其表面积为12+4.答案12+4.如图所示,正方体ABCD-A1B1C1D1的棱长为6,则以正方体ABCD-A1B1C1D1的中心为顶点,以平面AB1D1截正方体外接球所得的圆为底面的圆锥的全面积为.解析设O为正方体外接球的球心,则O也是正方体的中心,O到平面AB1D1的距离是体对角线长的,即为.又球的半径是正方体对角线长的一半,即为3,由勾股定理可知,截面圆的半径为二2,圆锥底面面积为81=(2)2=24,圆锥的母线即为球的半径3,圆锥的侧面积为82=23=18.因此圆锥的全面积为8=82+81=18=(18+24).答案(18+24)三、解答题.一个几何体的三视图如图所示.已知主视图是底边长为1的平行四边形,左视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.⑴求该几何体的体积V;⑵求该几何体的表面积8.解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V二11二.⑵由三视图可知,该平行六面体中,A1D平面ABCD,CD平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形,8=2(11+1+12)=6+2..在直三棱柱ABC-A1B1C1中,底面为直角三角形,ACB=90,AC=6,BC=CC1=,P是BC1上一动点,如图所示,求CP+PA1的最小值.解PA1在平面A1BC1内,PC在平面BCC1内,将其铺平后转化为平面上的问题解决.铺平平面A1BC1、平面BCC1,如图所示.计算A1B=AB1=,BC1=2,又A1C1=6,故A1BC1是A1C1B=90的直角三角形.CP+PA1A1C.在AC1C中,由余弦定理,得A1C===5,故(CP+PA1)min=5..某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥PEFGH,下半部分是长方体ABCDEFGH.图2、图3分别是该标识墩的主视图和俯视图.(1)请画出该安全标识墩的左视图;⑵求该安全标识墩的体积.(1)左视图同主视图,如图所示:⑵该安全标识墩的体积为V=VPEFGH+VABCDEFGH=40260+40220=64000(cm3)..如图(a),在直角梯形ABCD中,ADC=90,CDAB,AB=4,AD=CD=2,将ADC沿AC折起,使平面ADC平面ABC,得到几何体D-ABC,如图(b)所示.(1)求证:BC平面ACD;⑵求几何体D-ABC的体积.⑴证明在图中,可得AC=BC=2,从而AC2+BC2=AB2,故ACBC,又平面ADC平面ABC,平面ADC平面ABC=AC,BC平面ABC,BC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 特殊教育学校个性化音乐教学的初探
- 【初中物理】2024-2025学年苏科版初中物理八年级上册 期中复习单选题练习
- 兰州2024年统编版小学英语第3单元真题试卷
- 2024年高考数学复习试题专项汇编:函数与导数
- 2024年阻燃ABS热塑性弹性体项目投资申请报告代可行性研究报告
- 2023年矿山施工设备:凿岩机械投资申请报告
- 2024年玻璃纤维网垫项目资金申请报告代可行性研究报告
- 2023年抗生素类药品资金需求报告
- 临床消化道出血高发年龄、出血征象、生命指症评估、诊断鉴别及急诊处理
- 监督管理制度
- 2021年国开电大职业与人生形考任务二答案
- 《材料力学》说课课件
- 浅埋暗挖法施工课件
- 命题作文《这就是幸福》指导与讲评讲解课件
- 办文办会办事及公文写作-课件
- 重症超声在ICU的应用-课件
- NB∕T 10739-2021 井工煤矿辅助运输安全管理规范
- 2022年中国盐业集团有限公司校园招聘笔试试题及答案解析
- 球墨铸铁管道施工的学习课件
- 2022年小学六年级毕业监测科学素养测试题试卷 (含答题卡)
- 部编二年级语文查字典练习题
评论
0/150
提交评论