版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
II卷非选择题(90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知函数,则__________.14.已知是定义域为R的奇函数,且当时,则________.15.在平面直角坐标系xOy中,角,的终边分别与单位圆交于点A,B,若直线AB的斜率为,则=______.16.已知函数,若在区间上单调递增,则的取值范围是_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分。17.(12分)2023年2月15日,四川省卫健委发布新版《四川省生育登记服务管理办法》,其中一条修订内容为“取消了对登记对象是否结婚的限制条件.”该修订内容在社会上引起了广泛的关注和讨论.某研究小组针对此问题,在四川某大学做了一项关于教职工、学生和学生家长对这一修订政策的态度调查,调查通过问卷形式完成,共回收了160份有效问卷.为了研究不同身份与对政策态度的相关性,该小组将人群分为“学生”、“教职工”、“家长”三种身份.被调查人需要对自己的态度区分为“支持政策”、“反对政策”和“有条件地支持(支持政策,但是认为需要对登记人再额外增加一些附加条件)”.研究结果如下表所示:支持政策反对政策有条件地支持合计学生305540教职工20452590家长158730合计655837160(1)为了研究校内人员身份(学生/教职工)与态度之间的关系,研究小组将“支持政策”和“有条件地支持”两个分类合并为“比较支持”组.试问,我们是否有的把握认为,校内人员的身份(学生/教职工)和态度(比较支持/反对)有关?(2)如果从样本中反对政策的5名学生中随机抽取3个人,求其中学生A和学生B同时被选中的概率.参考公式:.0.100.050.0100.0052.7063.8416.6357.87918.(12分)已知等差数列的首项为1,公差,其前n项和满足.(1)求公差d;(2)是否存在正整数m,k使得.19.(12分)如图(1),已知边长为2的菱形ABCD中,沿对角线BD将其翻折,使,设此时AC的中点为O,如图(2).(1)求证:点O是点D在平面上的射影;(2)求点A到平面BCD的距离.20.(12分)已知函数.(1)求的单调区间;(2)若对任意恒成立,求实数的取值范围.21.(12分)如图,在平面直角坐标系中,已知抛物线C:的焦点为F,准线为l,过点F且斜率大于0的直线交抛物线C于A,B两点,过线段AB的中点M且与x轴平行的直线依次交直线OA,OB,l于点P,Q,N.(1)判断线段PM与NQ长度的大小关系,并证明你的结论;(2)若线段NP上的任意一点均在以点Q为圆心、线段QO长为半径的圆内或圆上,求直线AB斜率的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分.22.(选修4-4极坐标与参数方程)在平面直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)过点倾斜角为的直线与曲线交于两点,求的值.23.(选修4-5不等式选讲)已知函数.(1)当,时,解不等式;(2)若函数的最小值是2,证明:.数学(文史类)参考答案1.D2.C3.B4.A5.C6.C7.D8.A9.A10.C11.C12.C13.414.15.16.17.解:(1)根据条件,重新画出列联表如下:比较支持政策反对政策合计学生35540教职工454590合计8050130假设:校内人员的身份(学生/教职工)和态度(比较支持/反对)是相互独立的.则统计检验量,所以拒绝假设,我们有以上的把握认为校内人员的身份(学生/教职工)和态度(比较支持/反对)是相关的.(2)记样本中反对政策的5名学生分别为A、B、C、D、E,则抽取三人可能取到的组合有:,,,,,,,,,共10种情况.其中学生A和学生B同时被选中的有:,,,共3种情况.所以概率为.18.解:(1)因为,,所以,所以,即,解得:或.因为,所以.(2)法一:由(1)得,,,时;时;时;时(舍),当时,,不合题意;满足条件的有三组.法二:由(1)得,,故,所以,且,所以,所以,,.存在满足条件的有三组.19.解:(1)连接DO,因为,O为AC的中点,所以,设菱形ABCD的边长为2,又因为,所以,连接BO,则,又因为,,所以,所以,所以,又,所以,所以,又,平面,平面,所以平面,所以点O是点D在平面上的射影;(2)设点A到平面BCD的距离为h,由菱形ABCD的边长为2,且,则的面积为,则,的面积为,由(1)知,平面,,所以,由得,,所以,即点A到平面BCD的距离为.20.(1)函数的定义域为,.
设,则,当为增函数;当为减函数.有最大值,,,的单调递减区间是,无单调递增区间.(2)不等式对恒成立,则.当时,只需
设,,则.,,,.
①当时,,递减,则,故递减,所以,故不满足.②当时,,故当时,,则递减,则,,故当时,递减,所以,故不满足.
③当时,,则递增,,故递增,所以,满足题意.综上:不等式对任意恒成立时,.所以实数的取值范围为21.解:(1)设,,,则,,由于,,三点共线,则,整理得,,则,同理可得则,,则,即证.(2)若线段NP上的任意一点均在以点Q为圆心、线段QO长为半径的圆内或圆上即,则,化简得,又因为,则,,则直线斜率的取值范围为:.22.解:(1)依题意,曲线的普通方程为,即,故,故,故所求极坐标方程为;(2)设直线的参数方程为(为参数),将此
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度供应链管理服务合同标的与服务流程详细说明
- 2024年度碧桂园房地产销售代理合同
- 2024年度智能家居系统开发与技术服务合同2篇
- 2024年度废弃物料环保焚烧服务合同
- 2024年度广告发布合同:为期一年的高速公路广告牌租赁
- 2024年度供应链融资合同:某电商公司供应链融资2篇
- 2024年度企业产品品牌合作发展合同
- 安全用电施工协议书模板2
- 2024年度网站建设合同担保安排
- 2024年度电商企业合作研究合同
- 网络消费者行为分析高职PPT完整全套教学课件
- 儿科危重症的早期识别-危重症的早期识别课件
- 初中申请加入培优班申请书
- 检维修作业安全管理
- 隐蔽-植物-种植隐蔽工程检查验收记录
- petrel软件详细教程课件
- 新能源汽车技术高职PPT完整全套教学课件
- 医院人力资源管理测试题
- 首先打破一切常规:世界顶级管理者的成功秘诀
- 中班心理健康活动:《我的情绪小屋》
- 公司员工奖励制度
评论
0/150
提交评论