版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若变量,满足,则的最大值为()A.3 B.2 C. D.102.若复数(是虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.函数(或)的图象大致是()A. B. C. D.4.如图是二次函数的部分图象,则函数的零点所在的区间是()A. B. C. D.5.已知集合,,,则()A. B. C. D.6.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是()A. B. C. D.7.函数的图象大致为()A. B.C. D.8.函数()的图象的大致形状是()A. B. C. D.9.已知类产品共两件,类产品共三件,混放在一起,现需要通过检测将其区分开来,每次随机检测一件产品,检测后不放回,直到检测出2件类产品或者检测出3件类产品时,检测结束,则第一次检测出类产品,第二次检测出类产品的概率为()A. B. C. D.10.设向量,满足,,,则的取值范围是A. B.C. D.11.已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为()A. B.C. D.12.已知是定义在上的奇函数,且当时,.若,则的解集是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.请列举用0,1,2,3这4个数字所组成的无重复数字且比210大的所有三位奇数:___________.14.若满足约束条件,则的最大值为__________.15.如图,在平行四边形中,,,则的值为_____.16.设函数,,其中.若存在唯一的整数使得,则实数的取值范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,.(Ⅰ)求角的大小;(Ⅱ)若,,求的值.18.(12分)已知x∈R,设,,记函数.(1)求函数取最小值时x的取值范围;(2)设△ABC的角A,B,C所对的边分别为a,b,c,若,,求△ABC的面积S的最大值.19.(12分)若函数为奇函数,且时有极小值.(1)求实数的值与实数的取值范围;(2)若恒成立,求实数的取值范围.20.(12分)已知函数.(1)求函数的单调区间;(2)当时,如果方程有两个不等实根,求实数t的取值范围,并证明.21.(12分)已知函数()在定义域内有两个不同的极值点.(1)求实数的取值范围;(2)若有两个不同的极值点,,且,若不等式恒成立.求正实数的取值范围.22.(10分)选修4—5;不等式选讲.已知函数.(1)若的解集非空,求实数的取值范围;(2)若正数满足,为(1)中m可取到的最大值,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
画出约束条件的可行域,利用目标函数的几何意义求解最大值即可.【详解】解:画出满足条件的平面区域,如图示:如图点坐标分别为,目标函数的几何意义为,可行域内点与坐标原点的距离的平方,由图可知到原点的距离最大,故.故选:D【点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题.2、A【解析】
将整理成的形式,得到复数所对应的的点,从而可选出所在象限.【详解】解:,所以所对应的点为在第一象限.故选:A.【点睛】本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把当成进行计算.3、A【解析】
确定函数的奇偶性,排除两个选项,再求时的函数值,再排除一个,得正确选项.【详解】分析知,函数(或)为偶函数,所以图象关于轴对称,排除B,C,当时,,排除D,故选:A.【点睛】本题考查由函数解析式选择函数图象,解题时可通过研究函数的性质,如奇偶性、单调性、对称性等,研究特殊的函数的值、函数值的正负,以及函数值的变化趋势,排除错误选项,得正确结论.4、B【解析】
根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】∵,结合函数的图象可知,二次函数的对称轴为,,,∵,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题.5、A【解析】
求得集合中函数的值域,由此求得,进而求得.【详解】由,得,所以,所以.故选:A【点睛】本小题主要考查函数值域的求法,考查集合补集、交集的概念和运算,属于基础题.6、B【解析】
由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.【详解】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种由古典概型,取的3个球的编号的中位数恰好为5的概率为:故选:B【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.7、A【解析】
根据函数的奇偶性和单调性,排除错误选项,从而得出正确选项.【详解】因为,所以是偶函数,排除C和D.当时,,,令,得,即在上递减;令,得,即在上递增.所以在处取得极小值,排除B.故选:A【点睛】本小题主要考查函数图像的识别,考查利用导数研究函数的单调区间和极值,属于中档题.8、C【解析】
对x分类讨论,去掉绝对值,即可作出图象.【详解】故选C.【点睛】识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.9、D【解析】
根据分步计数原理,由古典概型概率公式可得第一次检测出类产品的概率,不放回情况下第二次检测出类产品的概率,即可得解.【详解】类产品共两件,类产品共三件,则第一次检测出类产品的概率为;不放回情况下,剩余4件产品,则第二次检测出类产品的概率为;故第一次检测出类产品,第二次检测出类产品的概率为;故选:D.【点睛】本题考查了分步乘法计数原理的应用,古典概型概率计算公式的应用,属于基础题.10、B【解析】
由模长公式求解即可.【详解】,当时取等号,所以本题答案为B.【点睛】本题考查向量的数量积,考查模长公式,准确计算是关键,是基础题.11、A【解析】
设椭圆的半长轴长为,双曲线的半长轴长为,根据椭圆和双曲线的定义得:,解得,然后在中,由余弦定理得:,化简求解.【详解】设椭圆的长半轴长为,双曲线的长半轴长为,由椭圆和双曲线的定义得:,解得,设,在中,由余弦定理得:,化简得,即.故选:A【点睛】本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题.12、B【解析】
利用函数奇偶性可求得在时的解析式和,进而构造出不等式求得结果.【详解】为定义在上的奇函数,.当时,,,为奇函数,,由得:或;综上所述:若,则的解集为.故选:.【点睛】本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在处有意义时,的情况.二、填空题:本题共4小题,每小题5分,共20分。13、231,321,301,1【解析】
分个位数字是1、3两种情况讨论,即得解【详解】0,1,2,3这4个数字所组成的无重复数字比210大的所有三位奇数有:(1)当个位数字是1时,数字可以是231,321,301;(2)当个位数字是3时数字可以是1.故答案为:231,321,301,1【点睛】本题考查了分类计数法的应用,考查了学生分类讨论,数学运算的能力,属于基础题.14、4【解析】
作出可行域如图所示:由,解得.目标函数,即为,平移斜率为-1的直线,经过点时,.15、【解析】
根据ABCD是平行四边形可得出,然后代入AB=2,AD=1即可求出的值.【详解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案为:﹣1.【点睛】本题考查了向量加法的平行四边形法则,相等向量和相反向量的定义,向量数量积的运算,考查了计算能力,属于基础题.16、【解析】
根据分段函数的解析式画出图像,再根据存在唯一的整数使得数形结合列出临界条件满足的关系式求解即可.【详解】解:函数,且画出的图象如下:因为,且存在唯一的整数使得,故与在时无交点,,得;又,过定点又由图像可知,若存在唯一的整数使得时,所以,存在唯一的整数使得所以.根据图像可知,当时,恒成立.综上所述,存在唯一的整数使得,此时故答案为:【点睛】本题主要考查了数形结合分析参数范围的问题,需要根据题意分别分析定点右边的整数点中为满足条件的唯一整数,再数形结合列出时的不等式求的范围.属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)由正弦定理得到.消去公因式得到所以.进而得到角A;(2)结合三角形的面积公式,和余弦定理得到,联立两式得到.解析:(I)因为,所以,由正弦定理,得.又因为,,所以.又因为,所以.(II)由,得,由余弦定理,得,即,因为,解得.因为,所以.18、(1);(2)【解析】
(1)先根据向量的数量积的运算,以及二倍角公式和两角和的正弦公式化简得到f(x)=,再根据正弦函数的性质即可求出答案;(2)先求出C的大小,再根据余弦定理和基本不等式,即可求出,根据三角形的面积公式即可求出答案.【详解】(1).令,k∈Z,即时,,取最小值,所以,所求的取值集合是;(2)由,得,因为,所以,所以,.在中,由余弦定理,得,即,当且仅当时取等号,所以的面积,因此的面积的最大值为.【点睛】本题考查了向量的数量积的运算和二倍角公式,两角和的正弦公式,余弦定理和基本不等式,三角形的面积公式,属于中档题.19、(1),;(2)【解析】
(1)由奇函数可知在定义域上恒成立,由此建立方程,即可求出实数的值;对函数进行求导,,通过导数求出,若,则恒成立不符合题意,当,可证明,此时时有极小值.(2)可知,进而得到,令,通过导数可知在上为单调减函数,由可得,从而可求实数的取值范围.【详解】(1)由函数为奇函数,得在定义域上恒成立,所以,化简可得,所以.则,令,则.故当时,;当时,,故在上递减,在上递增,若,则恒成立,单调递增,无极值点;所以,解得,取,则又函数的图象在区间上连续不间断,故由函数零点存在性定理知在区间上,存在为函数的零点,为极小值,所以,的取值范围是.(2)由满足,代入,消去可得.构造函数,所以,当时,,即恒成立,故在上为单调减函数,其中.则可转化为,故,由,设,可得当时,则在上递增,故.综上,的取值范围是.【点睛】本题考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,考查了奇函数的定义,考查了转化的思想.对于恒成立的问题,常转化为求的最小值,使;对于恒成立的问题,常转化为求的最大值,使.20、(1)当时,的单调递增区间是,单调递减区间是;当时,的单调递增区间是,单调递减区间是;(2),证明见解析.【解析】
(1)求出,对分类讨论,分别求出的解,即可得出结论;(2)由(1)得出有两解时的范围,以及关系,将,等价转化为证明,不妨设,令,则,即证,构造函数,只要证明对于任意恒成立即可.【详解】(1)的定义域为R,且.由,得;由,得.故当时,函数的单调递增区间是,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是.(2)由(1)知当时,,且.当时,;当时,.当时,直线与的图像有两个交点,实数t的取值范围是.方程有两个不等实根,,,,,,即.要证,只需证,即证,不妨设.令,则,则要证,即证.令,则.令,则,在上单调递增,.,在上单调递增,,即成立,即成立..【点睛】本题考查函数与导数的综合应用,涉及到函数单调性、极值、零点、不等式证明,构造函数函数是解题的关键,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.21、(1);(2).【解析】
(1)求导得到有两个不相等实根,令,计算函数单调区间得到值域,得到答案.(2),是方程的两根,故,化简得到,设函数,讨论范围,计算最值得到答案.【详解】(1)由题可知有两个不相等的实根,即:有两个不相等实根,令,,,,;,,故在上单增,在上单减,∴.又,时,;时,,∴,即.(2)由(1)知,,是方程的两根,∴,则因为在单减,∴,又,∴即,两边取对数,并整理得:对恒成立,设,,,当时,对恒成立,∴在上单增,故恒成立,符合题意;当时,,时,∴在上单减,,不符合题意.综上,.【点睛】本题考查了根据极值点求参数,恒成立问题,意在考查学生的计算能力和综合应用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学生共青团活动介绍
- 太阳能发电效益测算
- 总结者挑剔者控场者记录者无领导小组讨论测评常见的角
- 100以内加减法竖式计算单元作业试题大全附答案
- 需要性重要性创造性可行性合适性
- 《生理学感觉系统》课件
- 《入井安全须知》课件
- 一提供安全感
- f放射治疗总体概况
- 公司培训介绍
- 2024 ESC慢性冠脉综合征指南解读(全)
- 2024二十届三中全会知识竞赛题库及答案
- (高清版)JTG 5142-2019 公路沥青路面养护技术规范
- 物流运输项目 投标方案(适用烟草、煤炭、化肥、橡胶等运输项目)(技术方案)
- 电力企业合规培训课件
- 领导干部任前谈话记录表
- GB/T 10058-2009电梯技术条件
- 施工现场质量管理检查记录表【精选文档】
- 新版pep小学英语四上单词默写
- 期中考试班会PPT
- 送货单EXCEL模板
评论
0/150
提交评论