版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本文格式为Word版,下载可任意编辑——模拟集成电路中的频率补偿
Feature
Two-Stage
OperationalAmplifiers:
Power-and-Area-EfficientFrequencyCompensationforDrivingaWideRangeofCapacitiveLoad
DIGITALVISION
DigitalObjectIdentifier10.1109/MCAS.2023.939783Dateofpublication:18February2023
26IEEECIRCUITSANDSYSTEMSMAGAZINE
1531-636X/11/$26.002023IEEEFIRSTQUARTER2023
B5a2114a0a12a1
CM2
ItcanbeobservedthatBCMisnotaffectedbythetypeofpoles,nomattertheyaretworealpolesoracom-plexpair(thedampingfactormustbenolessthan1/2accordingto(4)).Providingthattheeffectivecapaci-tanceisagivenconstraint,theBCMcanbeextendedbyincreasingthevalueofa0(i.e.reducingthevalueofCbwhileincreasingRbtofullyutilizethecharacteristicofsmallparasiticCpb).Forexample,ifa1$2a0isthere-quirementforastablelocalloop,BCMis$0.732a0(i.e.0.732(gmb1/Cb)).Intermsofthepowerbudget,thebiascurrentcanbeaccuratelymeasuredbythetransconductanceofalltransistors[17].ThetotaltransconductanceofeachCMis2gmb1.Thecurrent-mirrorCM’sbandwidthBCM21isgivenby,B2gmb1CM215M11CbFIRSTQUARTER2023
From(11),itwouldbepossibletodemonstratethat
thefrequencyperformanceoftheproposedCMissu-perior,whencomparedwiththecurrent-mirrorCM
becauseMmustbesettobegreaterthanonetoper-formcapacitanceamplification.AsforothercomplexCMs,duetotheexistenceofparasiticlow-frequencypoles,theirbandwidthisevensmallerthanthatofacurrent-mirrorCM.Toprovetheforgoingassertions,differentdesignsaimingtoobtain9-pFeffectivecapacitancewith10-mAquiescentcurrentdissipationarecarriedout.Figure9(a)and(b)showsthefrequencycharacterizationoftheproposedCMswithdifferentvaluesofRbandCb.AsshowninFig.9(b),BCMoftheproposedCM’sincreaseswithalargerRbthatcorrespondstoasmallerCb.How-ever,themagnitudepeakingalsogrowsfastasshowninFig.9(a);theupperboundaryofBCMislimitedbythestabilityimposedbythelocalresistivefeedback.Figure10(a)and(b)showsthemagnitudeandphase
responsesofdifferentCMs,respectively.Noticethatthe
phaseresponsesofthebasiccurrentmirrorandcurrent-mirrorCMareintentionallyinvertedfromdrop,beginning
IEEECIRCUITSANDSYSTEMSMAGAZINE
33
small-signalequivalentmodeloftheOpAmp.gm1andgm2representthetransconductanceofM1andM2,respec-transconductanceofM7andM8tively,withgm15gm2.Thetransconductance,isgmb.gmListhesumofM9andM10’s
whichincludestheaceffectoftheclass-ABstage.The
outputconductanceofeachstageisdenotedbygob,go1,andgoL,respectively.Cpb,Cp1,andCp2thatlumpedintotheloadcapacitorCL,representtheparasiticcapacitancesatthecorrespondingstages.AsmallCbamplifiedbythepro-posedCMhaslargeeffectivecapacitanceandcausesthetwopolesassociatedwiththeinputandoutputnodesof
thesecondstagetosplitapart,leadingtowidelyspaced
dominantandnon-dominantpoles.ThepurposeofCdistoadjustthepositionofthefirstnon-dominantpoleand
handleawiderangeofloadcapacitance.Anarea-efficientMOSCAPbefitsCdforareareduction.
A.LocalFeedbackLoop
AnalysisoftheProposedOpAmp
WhentheproposedCMisincorporatedintothetwo-stageOpAmp,itintroducesalocalfeedbacklooparoundthesecondstage.ToanalyzethestabilityoftheOpAmpundervaryingcapacitiveload,thelocalloopisbrokenatthenodeVbasshowninFig.11(b).InadditiontotheassumptionsmadeforanalyzingtheproposedCM,thelocaltransferfunctionTL1s2iscalculatedwiththefol-lowingassumptions:
1)Thegainofallthestagesaremuchgreaterthan1;2)TheparasiticcapacitanceCpb,Cp1,andCp2aremuchsmallerthanCb,whileCLismuchlargerthanCb.Hence,TL1s2isgivenby,TL1s2
2
sgmL1gmbRb212Cb
.
ggss
CbCbRbCpbo1oLa11pdba11p1ba11sg1s2b
mbgmb
(12)ThemagnitudeplotofTL1s2isshowninFig.12within-creasinglylargeCL.Thedominantpoleofthelocalloopisvpd5goL/CL
whilethefirstnon-dominantpoleisvp15go1/1Cp11Cd2.vistheUGFofthelocalloopandothertwohigh-frequencypolesareproducedbytheCM,whicharegmb/Cb,and1/1RbCpb2,respectively.Ofcourse,theymightexhibittheformoftwocomplexpoles.
AsdescribedinFig.12,whenCLissmall,vmmightbelocatedcloseto,gmb/Cband1/1RbCpb2.WithmuchsmallerCL,thePMofthelocalloopworsenstocauseasignificantpeakingintheoveralltransferfunctionoftheOpAmp[27].Therefore,theOpAmphasalowerlimitfordrivingcapacitiveloads.Toevaluatethelimit,thePM
FIRSTQUARTER2023
ofthelocalloopisassumedtobelargerthan45,and
expressedasvm
PMblocal902arctan
gmb/C.(13)
12
v2$45mgbCpb
mb/Cb
From(4),gmb/Cbissettobeequalto1/1RbCpb2tomake
fulluseoftheproposedCM.Solving(13)withthiscondi-tion,impliesthattheminimumCLthatensuresastablelocalloopis
C15112gmL1gmbRb212C2b
L5
2gmb1Cp11Cd2
IfCdisnotadded,theminimumCLisstillverylarge.
SotheOpAmpisunabletohandlesmallcapacitiveloadwithoutCd.
Sincevm,gmb/Cb,and1/1RbCpb2determinethehigh-frequencypolesoftheOpAmp’soveralltransferfunc-tion,alargervmsuggestsalargerPM.AsCLincreases,vmisreduced,asshowninFig.12.Althoughthelocalloop’sPMimproves,theOpAmp’sPMdegrades.Thistrendcontinuesuntilthemid-bandlocalloopgainbe-comeslessthantheunity,whichisgivenby
gmL1gmbRb212Cb
g,1.(15)
o1CL
Underthiscondition,thelocalloopfailstocontrolthehigh-frequencybehavioroftheOpAmp.Therefore,thetransferfunctionoftheOpAmpisobtainedbymere-lyconsideringtheopenloopgivenbelow:
g1gmbRb112Cb
m1gmLa11s
A2gmb
v1s2
gC
p1d
o1goLa11s
gba11sCL
o1
gb
oL
IEEECIRCUITSANDSYSTEMSMAGAZINE
35
before,thereisanLHPzerovz1inthetransferfunction.avoidingtheconductionofparasiticdiodeinMR,orToguaranteethestabilityoftheoverallloop,vz1mustdiode-connectedMRitself.belocatedabovetheGBW,thuscontributingtothe
OpAmp’sPM,whichistranslatedtothefollowingcondition,D.NoiseAnalysis
KnowingtheinternalnoisetransferfunctionsoftheOpAmpeasesthedevicesizing.Thesimplifiedsche-gm121gmbRb212
,2.(20)
maticoftheproposedOpAmpanditssmall-signalgmbgmbRbequivalentcircuitforthenoiseanalysisareshowninFig.13(a)and(b),respectively.Yoirepresentsthelumpedadmittanceatthecorrespondingnode.C.DesignConsiderations
ThenoisegeneratedbythetailcurrentsourceMb6is
fortheClass-ABOutputStage
Aclass-ABoutputstage[45]isemployedtoenhancethetransientperformanceoftheOpAmp.TheroleofCbatistwofold.First,itcanbeexploitedtoincrease
thegainoftheOpAmpbecauseitisbymeansofCbat
thatthetransconductanceofM10,gm10,takeseffect.In
ordertoincreasethelow-frequencygain,alargerCbat
isdesired.Second,alargerCbatiscriticaltoensurean
accuratevoltagetransferfromthegateofM9tothatof
M10.Hence,Cbatlargerthan10Cgs10isselected.
ThesaturationvoltageVdsatofM9hastobethe
sameasthatofM10sothatM9andM10haveequalcur-rentboostcapabilityduringtransients.Besides,a
relativelylowVdsatcanreducethedrasticchangeof
voltageattheoutputofthefirststage,decreasingor
FIRSTQUARTER2023IEEECIRCUITSANDSYSTEMSMAGAZINE
37
egligibleatthefrequenciesofinterest.Alsothenoisen
contributionofcascodetransistorsM5andM6islesssignificant.Hence,theanalysismainlyfocusesonthenoisecontributionofRb,M7,M8,andM9asthenoiseoftransistorsM1,M2,M3,andM4canbeeasilyreferredtotheinputstage,usinganequivalentinput-referredvoltagenoisesource.Theinput-referrednoisetransferfunctionsofthenoisesources:Rb,M7,M8andM9,arerespectivelygivenby,
11s11s
Cbgm7gm7
22
An,M81s225gm8gm1
#
a11s
2Cb
1211sRCbpb
gm7
#Av1s22(23)
gm7Rb11Cb
11s
gm7
2Cb
111sRbCpb2
go81sCp8gm7
#An,M91s2025#Av1s202
gm1gm7Rb11Cb
11s
gm7
(24)
a11s
An,Rb1s2025gm8gm1
#
1gm7Rb112Cb
#Av1s22(21)
An,M71s225gm8gm1
11sRbCb
##Av1s22(22)
gm7Rb11Cb
11s
gm7
whereAv(s)isthetransferfunctionoftheproposedam-plifier.Fromeqs.(21)–(24),itcanbeobservedthatthenoiseduetoRb,M7andM8generatesthemajorportionofthethermalnoisewithintheGBWoftheamplifier,whilethenoisecontributionofM9issuppressedbythegainofthefirststage.
38IEEECIRCUITSANDSYSTEMSMAGAZINE
FIRSTQUARTER2023
[2]T.Itakura,H.Minamizaki,T.Saito,andT.Kuroda“A402-outputTFT-LCDdriverICwithpowercontrolbasedonthenumberofcolorsse-lected,〞IEEEJ.Solid-StateCircuits,vol.38,no.3,pp.503–510,Mar.2023.[3]V.Dhanasekaran,J.Silva-Martnez,andE.Schez-Sinencio,“Designofthree-stageclass-AB16Vheadphonedrivercapableofhandlingwiderangeofloadcapacitance,〞IEEEJ.Solid-StateCircuits,vol.44,no.6,pp.1734–1744,June2023.
[4]K.N.LeungandP.K.T.Mok,“Analysisofmultistageamplier-fre-quencycompensation,〞IEEETrans.CircuitsSyst.I,vol.48,no.9,pp.1041–1056,Sept.2023.
[5]Y.P.TsividisandP.R.Gray,“AnintegratedNMOSoperationalampli-erwithinternalcompensation,〞IEEEJ.Solid-StateCircuits,vol.13,no.6,pp.748–753,Dec.1976.
[6]D.Senderowicz,D.A.Hodges,andP.R.Gray,“High-performanceresponseimprovement,〞IEEETrans.CircuitsSyst.II,vol.55,no.9,pp.853–857,Sept.2023.
[24]K.H.Chen,C.J.Chang,andT.H.Liu,“Bidirectionalcurrent-modecapacitormultipliersforon-chipcompensation,〞IEEETrans.PowerElectron.,vol.23,no.1,pp.180–188,Jan.2023.
[25]Z.Yan,“Two-stagelargecapacitiveloadamplierwithembeddedcapacitormultipliercompensation,〞inProc.IEEEISCAS’09,May2023,pp.2481–2484.
[26]L.J.Stotts,“IntroductiontoimplantablebiomedicalICdesign,〞IEEECircuitsDevicesMag.,vol.5,no.1,pp.12–18,Jan.1989.
[27]P.R.Gray,P.J.Hurst,S.H.Lewis,andR.G.Meyer,AnalysisandDe-signofAnalogIntegratedCircuits,4thed.NewYork:Wiley,2023.
[28]Y.Tang,M.Ismail,andS.Bibyk,“AdaptiveMillercapacitormul-tiplierforcompacton-chipPLLlter,〞IEEElectron.Lett.,vol.39,pp.NMOSoperationalamplier,〞IEEEJ.Solid-StateCircuits,vol.15,no.6,pp.760–766,Dec.1978.
[7]W.C.Black,Jr.,D.J.Allstot,andR.A.Reed,“AhighperformancelowpowerCMOSchannellter,〞IEEEJ.Solid-StateCircuits,vol.15,no.6,pp.929–938,Dec.1980.
[8]F.You,H.K.Embabi,andE.Schez-Sinencio,“MultistageampliertopologieswithnestedGm-Ccompensation,〞IEEEJ.Solid-StateCircuits,vol.17,no.6,pp.2000–2023,Dec.1997.
[9]R.D.JollyandR.H.McCharles,“Alow-noiseamplierforswitched-capacitorlters,〞IEEEJ.Solid-StateCircuits,vol.32,no.6,pp.1192–1194,Dec.1982.
[10]K.Ahuja,“AimprovedfrequencycompensationtechniqueforCMOSoperationalampliers,〞IEEEJ.Solid-StateCircuits,vol.18,no.6,pp.629–633,Dec.1983.
[11]B.RibnerandM.A.Copeland,“DesigntechniquesforcascodedCMOSopampswithimprovedPSRRandcommon-modeinputrange,〞IEEEJ.Solid-StateCircuits,vol.19,no.6,pp.919–925,Dec.1984.
[12]G.PalmisanoandG.Palumbo,“Acompensationstrategyfortwo-stageCMOSopampsbasedoncurrentbuffer,〞IEEETrans.CircuitsSyst.I,vol.44,no.3,pp.257–262,Mar.1997.
[13]J.Mathattanakull,“Designproceduresfortwo-stageCMOSopera-tionalampliersemployingcurrentbuffer,〞IEEETrans.CircuitsSyst.II,vol.52,no.11,pp.766–770,Nov.2023.
[14]P.J.Hurst,S.H.Lewis,J.P.Keane,F.Aram,andK.C.Dyer,“MillercompensationusingcurrentbuffersinfullydifferentialCMOStwo-stageoperationalampliers,〞IEEETrans.CircuitsSyst.I,vol.51,no.2,pp.275–285,Feb.2023.
[15]W.Aloisi,G.Palumbo,andS.Pennisi,“DesignmethodologyofMill-erfrequencycompensationwithcurrentbuffer/ampliers,〞IETProc.Circuits,DevicesSyst.,vol.2,no.2,pp.227–233,Apr.2023.
[16]V.SaxenaandR.J.Baker,“CompensationofCMOSop-ampsusingsplit-lengthtransistors,〞inProc.IEEEMWSCAS2023,Aug.2023,pp.109–112.
[17]A.D.Grasso,G.Palumbo,andS.Pennisi,“Comparisonofthefre-quencycompensationtechniquesforCMOStwo-stageMillerOTAs,〞IEEETrans.CircuitsSyst.II,vol.55,no.11,pp.1099–1103,Nov.2023.[18]U.Dasgupta,“Issuesin“Ahuja〞frequencycompensationtech-nique,〞inProc.2023IEEEInt.Symp.Radio-FrequencyIntegrationTech-nology,2023,pp.326–329.
[19]R.J.ReayandG.T.A.Kovacs,“Anunconditionallystabletwo-stageCMOSamplier,〞IEEEJ.Solid-StateCircuits,vol.30,no.5,pp.591–594,May1995.
[20]G.A.Rincon-Mora,“ActivecapacitormultiplierinMiller-compensat-edcircuits,〞IEEEJ.Solid-StateCircuits,vol.35,no.1,pp.26–32,Jan.2000.[21]R.Suryanarayan,A.Gupta,andT.N.Blalock,“Aslewrateenhance-menttechniqueforoperationalampliersbasedonatunableactiveGm-basedcapacitancemultiplicationcircuit,〞inProc.13thACMGreatLakesSymp.VLSI,Apr.2023,pp.273–276.
[22]Q.Bian,Z.Yan,Y.Zhao,andS.Yue,“AnalysisanddesignofvoltagecontrolledcurrentsourceforLDOfrequencycompensation,〞inProc.IEEEInt.Conf.ElectronDevicesandSolid-StateCircuits,Dec.2023,pp.363–366.
[23]H.C.Lin,H.H.Wu,andT.Y.Chang,“Anactive-frequencycom-pensationschemeforCMOSlow-dropoutregulatorswithtransient-
4
2IEEECIRCUITSANDSYSTEMSMAGAZINE43–45,Jan.2023.
[29]H.LeeandP.K.T.Mok,“AnSCvoltagedoublerwithpseudo-contin-uousoutputregulationusingathree-stageswitchableopamp,〞IEEEJ.Solid-StateCircuits,vol.42,no.6,pp.1216–1229,June2023.
[30]F.Su,W.-H.Ki,andC.-T.Tsui,“Regulatedswitched-capacitordou-blerwithinterleavingcontrolforcontinuousoutputregulation,〞IEEEJ.Solid-StateCircuits,vol.44,no.4,pp.1112–1120,Apr.2023.
[31]S.Solis-Bustos,J.Silva-Martinez,F.Maloberti,andE.Snchez-Si-nencio,“A60-dBdynamicrangeCMOSsix-order2.4-Hzlow-passlterformedicalapplications,〞IEEETrans.CircuitsSyst.II,vol.47,no.12,pp.1391–1398,Dec.2000.
[32]K.Shu,E.Snchez-Sinencio,J.Silva-Martnez,andH.K.Embabi,“A2.4-GHzmonolithicfractional-Nfrequencysynthesizerwithrobustphase-switchingprescalerandloopcapacitancemultiplier,〞IEEEJ.Solid-StateCircuits,vol.38,no.6,pp.866–874,June2023.
[33]K.ChavaandJ.Silva-Martnez,“AfrequencycompensationschemeforLDOvoltageregulators,〞IEEETrans.CircuitsSyst.I,vol.51,no.6,pp.1041–1050,June2023.
[34]S.-R.Han,C.-N.Chuang,andS.-I.Liu,“Atime-constantcalibratedphase-lockedloopwithafast-lockedtime,〞IEEETrans.CircuitsSyst.II,vol.54,no.1,pp.34–37,Jan.2023.
[35]Y.-T.Wongetal.,“Near-thresholdstartupintegratedboostcon-verterwithslewrateenhancederroramplier,〞inProc.IEEEISCAS’09,May2023,pp.2409–2412.
[36]S.Pennis,“CMOSmultiplierforgroundedcapacitors,〞IETElectron.Lett.,vol.38,pp.765–766,J
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度出租车行业品牌推广协议
- 2024年度项目合作与投资合同模板
- 程序员2024年度团队协作协议
- 保密协议完整版
- 二零二四年度LED显示屏生产设备采购合同
- 2024年度电力传输合同标的:新建跨区域电力线路工程设计与施工
- 北京市二零二四年度广告代理合同
- 2024年度购物中心品牌特许经营合同
- 二零二四年度工程款结算与审计合同3篇
- 二零二四年度旅游业务合作与代理合同
- 学前教育大学生职业生涯规划
- 不良品分析步骤
- 《红领巾胸前飘》课件
- 塑胶模具钳工培训课件
- 修理工安全培训课件
- l淋巴瘤护理查房
- 睾丸鞘膜积液的护理查房
- 第三节创造有意义的人生
- 《非计划性拔管》课件
- 重大事故隐患排查表 21S
- 小升初资料:《红楼梦》思维导图+考点汇总+习题(含答案)
评论
0/150
提交评论