模拟集成电路中的频率补偿_第1页
模拟集成电路中的频率补偿_第2页
模拟集成电路中的频率补偿_第3页
模拟集成电路中的频率补偿_第4页
模拟集成电路中的频率补偿_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文格式为Word版,下载可任意编辑——模拟集成电路中的频率补偿

Feature

Two-Stage

OperationalAmplifiers:

Power-and-Area-EfficientFrequencyCompensationforDrivingaWideRangeofCapacitiveLoad

DIGITALVISION

DigitalObjectIdentifier10.1109/MCAS.2023.939783Dateofpublication:18February2023

26IEEECIRCUITSANDSYSTEMSMAGAZINE

1531-636X/11/$26.002023IEEEFIRSTQUARTER2023

B5a2114a0a12a1

CM2

ItcanbeobservedthatBCMisnotaffectedbythetypeofpoles,nomattertheyaretworealpolesoracom-plexpair(thedampingfactormustbenolessthan1/2accordingto(4)).Providingthattheeffectivecapaci-tanceisagivenconstraint,theBCMcanbeextendedbyincreasingthevalueofa0(i.e.reducingthevalueofCbwhileincreasingRbtofullyutilizethecharacteristicofsmallparasiticCpb).Forexample,ifa1$2a0isthere-quirementforastablelocalloop,BCMis$0.732a0(i.e.0.732(gmb1/Cb)).Intermsofthepowerbudget,thebiascurrentcanbeaccuratelymeasuredbythetransconductanceofalltransistors[17].ThetotaltransconductanceofeachCMis2gmb1.Thecurrent-mirrorCM’sbandwidthBCM21isgivenby,B2gmb1CM215M11CbFIRSTQUARTER2023

From(11),itwouldbepossibletodemonstratethat

thefrequencyperformanceoftheproposedCMissu-perior,whencomparedwiththecurrent-mirrorCM

becauseMmustbesettobegreaterthanonetoper-formcapacitanceamplification.AsforothercomplexCMs,duetotheexistenceofparasiticlow-frequencypoles,theirbandwidthisevensmallerthanthatofacurrent-mirrorCM.Toprovetheforgoingassertions,differentdesignsaimingtoobtain9-pFeffectivecapacitancewith10-mAquiescentcurrentdissipationarecarriedout.Figure9(a)and(b)showsthefrequencycharacterizationoftheproposedCMswithdifferentvaluesofRbandCb.AsshowninFig.9(b),BCMoftheproposedCM’sincreaseswithalargerRbthatcorrespondstoasmallerCb.How-ever,themagnitudepeakingalsogrowsfastasshowninFig.9(a);theupperboundaryofBCMislimitedbythestabilityimposedbythelocalresistivefeedback.Figure10(a)and(b)showsthemagnitudeandphase

responsesofdifferentCMs,respectively.Noticethatthe

phaseresponsesofthebasiccurrentmirrorandcurrent-mirrorCMareintentionallyinvertedfromdrop,beginning

IEEECIRCUITSANDSYSTEMSMAGAZINE

33

small-signalequivalentmodeloftheOpAmp.gm1andgm2representthetransconductanceofM1andM2,respec-transconductanceofM7andM8tively,withgm15gm2.Thetransconductance,isgmb.gmListhesumofM9andM10’s

whichincludestheaceffectoftheclass-ABstage.The

outputconductanceofeachstageisdenotedbygob,go1,andgoL,respectively.Cpb,Cp1,andCp2thatlumpedintotheloadcapacitorCL,representtheparasiticcapacitancesatthecorrespondingstages.AsmallCbamplifiedbythepro-posedCMhaslargeeffectivecapacitanceandcausesthetwopolesassociatedwiththeinputandoutputnodesof

thesecondstagetosplitapart,leadingtowidelyspaced

dominantandnon-dominantpoles.ThepurposeofCdistoadjustthepositionofthefirstnon-dominantpoleand

handleawiderangeofloadcapacitance.Anarea-efficientMOSCAPbefitsCdforareareduction.

A.LocalFeedbackLoop

AnalysisoftheProposedOpAmp

WhentheproposedCMisincorporatedintothetwo-stageOpAmp,itintroducesalocalfeedbacklooparoundthesecondstage.ToanalyzethestabilityoftheOpAmpundervaryingcapacitiveload,thelocalloopisbrokenatthenodeVbasshowninFig.11(b).InadditiontotheassumptionsmadeforanalyzingtheproposedCM,thelocaltransferfunctionTL1s2iscalculatedwiththefol-lowingassumptions:

1)Thegainofallthestagesaremuchgreaterthan1;2)TheparasiticcapacitanceCpb,Cp1,andCp2aremuchsmallerthanCb,whileCLismuchlargerthanCb.Hence,TL1s2isgivenby,TL1s2

2

sgmL1gmbRb212Cb

.

ggss

CbCbRbCpbo1oLa11pdba11p1ba11sg1s2b

mbgmb

(12)ThemagnitudeplotofTL1s2isshowninFig.12within-creasinglylargeCL.Thedominantpoleofthelocalloopisvpd5goL/CL

whilethefirstnon-dominantpoleisvp15go1/1Cp11Cd2.vistheUGFofthelocalloopandothertwohigh-frequencypolesareproducedbytheCM,whicharegmb/Cb,and1/1RbCpb2,respectively.Ofcourse,theymightexhibittheformoftwocomplexpoles.

AsdescribedinFig.12,whenCLissmall,vmmightbelocatedcloseto,gmb/Cband1/1RbCpb2.WithmuchsmallerCL,thePMofthelocalloopworsenstocauseasignificantpeakingintheoveralltransferfunctionoftheOpAmp[27].Therefore,theOpAmphasalowerlimitfordrivingcapacitiveloads.Toevaluatethelimit,thePM

FIRSTQUARTER2023

ofthelocalloopisassumedtobelargerthan45,and

expressedasvm

PMblocal902arctan

gmb/C.(13)

12

v2$45mgbCpb

mb/Cb

From(4),gmb/Cbissettobeequalto1/1RbCpb2tomake

fulluseoftheproposedCM.Solving(13)withthiscondi-tion,impliesthattheminimumCLthatensuresastablelocalloopis

C15112gmL1gmbRb212C2b

L5

2gmb1Cp11Cd2

IfCdisnotadded,theminimumCLisstillverylarge.

SotheOpAmpisunabletohandlesmallcapacitiveloadwithoutCd.

Sincevm,gmb/Cb,and1/1RbCpb2determinethehigh-frequencypolesoftheOpAmp’soveralltransferfunc-tion,alargervmsuggestsalargerPM.AsCLincreases,vmisreduced,asshowninFig.12.Althoughthelocalloop’sPMimproves,theOpAmp’sPMdegrades.Thistrendcontinuesuntilthemid-bandlocalloopgainbe-comeslessthantheunity,whichisgivenby

gmL1gmbRb212Cb

g,1.(15)

o1CL

Underthiscondition,thelocalloopfailstocontrolthehigh-frequencybehavioroftheOpAmp.Therefore,thetransferfunctionoftheOpAmpisobtainedbymere-lyconsideringtheopenloopgivenbelow:

g1gmbRb112Cb

m1gmLa11s

A2gmb

v1s2

gC

p1d

o1goLa11s

gba11sCL

o1

gb

oL

IEEECIRCUITSANDSYSTEMSMAGAZINE

35

before,thereisanLHPzerovz1inthetransferfunction.avoidingtheconductionofparasiticdiodeinMR,orToguaranteethestabilityoftheoverallloop,vz1mustdiode-connectedMRitself.belocatedabovetheGBW,thuscontributingtothe

OpAmp’sPM,whichistranslatedtothefollowingcondition,D.NoiseAnalysis

KnowingtheinternalnoisetransferfunctionsoftheOpAmpeasesthedevicesizing.Thesimplifiedsche-gm121gmbRb212

,2.(20)

maticoftheproposedOpAmpanditssmall-signalgmbgmbRbequivalentcircuitforthenoiseanalysisareshowninFig.13(a)and(b),respectively.Yoirepresentsthelumpedadmittanceatthecorrespondingnode.C.DesignConsiderations

ThenoisegeneratedbythetailcurrentsourceMb6is

fortheClass-ABOutputStage

Aclass-ABoutputstage[45]isemployedtoenhancethetransientperformanceoftheOpAmp.TheroleofCbatistwofold.First,itcanbeexploitedtoincrease

thegainoftheOpAmpbecauseitisbymeansofCbat

thatthetransconductanceofM10,gm10,takeseffect.In

ordertoincreasethelow-frequencygain,alargerCbat

isdesired.Second,alargerCbatiscriticaltoensurean

accuratevoltagetransferfromthegateofM9tothatof

M10.Hence,Cbatlargerthan10Cgs10isselected.

ThesaturationvoltageVdsatofM9hastobethe

sameasthatofM10sothatM9andM10haveequalcur-rentboostcapabilityduringtransients.Besides,a

relativelylowVdsatcanreducethedrasticchangeof

voltageattheoutputofthefirststage,decreasingor

FIRSTQUARTER2023IEEECIRCUITSANDSYSTEMSMAGAZINE

37

egligibleatthefrequenciesofinterest.Alsothenoisen

contributionofcascodetransistorsM5andM6islesssignificant.Hence,theanalysismainlyfocusesonthenoisecontributionofRb,M7,M8,andM9asthenoiseoftransistorsM1,M2,M3,andM4canbeeasilyreferredtotheinputstage,usinganequivalentinput-referredvoltagenoisesource.Theinput-referrednoisetransferfunctionsofthenoisesources:Rb,M7,M8andM9,arerespectivelygivenby,

11s11s

Cbgm7gm7

22

An,M81s225gm8gm1

#

a11s

2Cb

1211sRCbpb

gm7

#Av1s22(23)

gm7Rb11Cb

11s

gm7

2Cb

111sRbCpb2

go81sCp8gm7

#An,M91s2025#Av1s202

gm1gm7Rb11Cb

11s

gm7

(24)

a11s

An,Rb1s2025gm8gm1

#

1gm7Rb112Cb

#Av1s22(21)

An,M71s225gm8gm1

11sRbCb

##Av1s22(22)

gm7Rb11Cb

11s

gm7

whereAv(s)isthetransferfunctionoftheproposedam-plifier.Fromeqs.(21)–(24),itcanbeobservedthatthenoiseduetoRb,M7andM8generatesthemajorportionofthethermalnoisewithintheGBWoftheamplifier,whilethenoisecontributionofM9issuppressedbythegainofthefirststage.

38IEEECIRCUITSANDSYSTEMSMAGAZINE

FIRSTQUARTER2023

[2]T.Itakura,H.Minamizaki,T.Saito,andT.Kuroda“A402-outputTFT-LCDdriverICwithpowercontrolbasedonthenumberofcolorsse-lected,〞IEEEJ.Solid-StateCircuits,vol.38,no.3,pp.503–510,Mar.2023.[3]V.Dhanasekaran,J.Silva-Martnez,andE.Schez-Sinencio,“Designofthree-stageclass-AB16Vheadphonedrivercapableofhandlingwiderangeofloadcapacitance,〞IEEEJ.Solid-StateCircuits,vol.44,no.6,pp.1734–1744,June2023.

[4]K.N.LeungandP.K.T.Mok,“Analysisofmultistageamplier-fre-quencycompensation,〞IEEETrans.CircuitsSyst.I,vol.48,no.9,pp.1041–1056,Sept.2023.

[5]Y.P.TsividisandP.R.Gray,“AnintegratedNMOSoperationalampli-erwithinternalcompensation,〞IEEEJ.Solid-StateCircuits,vol.13,no.6,pp.748–753,Dec.1976.

[6]D.Senderowicz,D.A.Hodges,andP.R.Gray,“High-performanceresponseimprovement,〞IEEETrans.CircuitsSyst.II,vol.55,no.9,pp.853–857,Sept.2023.

[24]K.H.Chen,C.J.Chang,andT.H.Liu,“Bidirectionalcurrent-modecapacitormultipliersforon-chipcompensation,〞IEEETrans.PowerElectron.,vol.23,no.1,pp.180–188,Jan.2023.

[25]Z.Yan,“Two-stagelargecapacitiveloadamplierwithembeddedcapacitormultipliercompensation,〞inProc.IEEEISCAS’09,May2023,pp.2481–2484.

[26]L.J.Stotts,“IntroductiontoimplantablebiomedicalICdesign,〞IEEECircuitsDevicesMag.,vol.5,no.1,pp.12–18,Jan.1989.

[27]P.R.Gray,P.J.Hurst,S.H.Lewis,andR.G.Meyer,AnalysisandDe-signofAnalogIntegratedCircuits,4thed.NewYork:Wiley,2023.

[28]Y.Tang,M.Ismail,andS.Bibyk,“AdaptiveMillercapacitormul-tiplierforcompacton-chipPLLlter,〞IEEElectron.Lett.,vol.39,pp.NMOSoperationalamplier,〞IEEEJ.Solid-StateCircuits,vol.15,no.6,pp.760–766,Dec.1978.

[7]W.C.Black,Jr.,D.J.Allstot,andR.A.Reed,“AhighperformancelowpowerCMOSchannellter,〞IEEEJ.Solid-StateCircuits,vol.15,no.6,pp.929–938,Dec.1980.

[8]F.You,H.K.Embabi,andE.Schez-Sinencio,“MultistageampliertopologieswithnestedGm-Ccompensation,〞IEEEJ.Solid-StateCircuits,vol.17,no.6,pp.2000–2023,Dec.1997.

[9]R.D.JollyandR.H.McCharles,“Alow-noiseamplierforswitched-capacitorlters,〞IEEEJ.Solid-StateCircuits,vol.32,no.6,pp.1192–1194,Dec.1982.

[10]K.Ahuja,“AimprovedfrequencycompensationtechniqueforCMOSoperationalampliers,〞IEEEJ.Solid-StateCircuits,vol.18,no.6,pp.629–633,Dec.1983.

[11]B.RibnerandM.A.Copeland,“DesigntechniquesforcascodedCMOSopampswithimprovedPSRRandcommon-modeinputrange,〞IEEEJ.Solid-StateCircuits,vol.19,no.6,pp.919–925,Dec.1984.

[12]G.PalmisanoandG.Palumbo,“Acompensationstrategyfortwo-stageCMOSopampsbasedoncurrentbuffer,〞IEEETrans.CircuitsSyst.I,vol.44,no.3,pp.257–262,Mar.1997.

[13]J.Mathattanakull,“Designproceduresfortwo-stageCMOSopera-tionalampliersemployingcurrentbuffer,〞IEEETrans.CircuitsSyst.II,vol.52,no.11,pp.766–770,Nov.2023.

[14]P.J.Hurst,S.H.Lewis,J.P.Keane,F.Aram,andK.C.Dyer,“MillercompensationusingcurrentbuffersinfullydifferentialCMOStwo-stageoperationalampliers,〞IEEETrans.CircuitsSyst.I,vol.51,no.2,pp.275–285,Feb.2023.

[15]W.Aloisi,G.Palumbo,andS.Pennisi,“DesignmethodologyofMill-erfrequencycompensationwithcurrentbuffer/ampliers,〞IETProc.Circuits,DevicesSyst.,vol.2,no.2,pp.227–233,Apr.2023.

[16]V.SaxenaandR.J.Baker,“CompensationofCMOSop-ampsusingsplit-lengthtransistors,〞inProc.IEEEMWSCAS2023,Aug.2023,pp.109–112.

[17]A.D.Grasso,G.Palumbo,andS.Pennisi,“Comparisonofthefre-quencycompensationtechniquesforCMOStwo-stageMillerOTAs,〞IEEETrans.CircuitsSyst.II,vol.55,no.11,pp.1099–1103,Nov.2023.[18]U.Dasgupta,“Issuesin“Ahuja〞frequencycompensationtech-nique,〞inProc.2023IEEEInt.Symp.Radio-FrequencyIntegrationTech-nology,2023,pp.326–329.

[19]R.J.ReayandG.T.A.Kovacs,“Anunconditionallystabletwo-stageCMOSamplier,〞IEEEJ.Solid-StateCircuits,vol.30,no.5,pp.591–594,May1995.

[20]G.A.Rincon-Mora,“ActivecapacitormultiplierinMiller-compensat-edcircuits,〞IEEEJ.Solid-StateCircuits,vol.35,no.1,pp.26–32,Jan.2000.[21]R.Suryanarayan,A.Gupta,andT.N.Blalock,“Aslewrateenhance-menttechniqueforoperationalampliersbasedonatunableactiveGm-basedcapacitancemultiplicationcircuit,〞inProc.13thACMGreatLakesSymp.VLSI,Apr.2023,pp.273–276.

[22]Q.Bian,Z.Yan,Y.Zhao,andS.Yue,“AnalysisanddesignofvoltagecontrolledcurrentsourceforLDOfrequencycompensation,〞inProc.IEEEInt.Conf.ElectronDevicesandSolid-StateCircuits,Dec.2023,pp.363–366.

[23]H.C.Lin,H.H.Wu,andT.Y.Chang,“Anactive-frequencycom-pensationschemeforCMOSlow-dropoutregulatorswithtransient-

4

2IEEECIRCUITSANDSYSTEMSMAGAZINE43–45,Jan.2023.

[29]H.LeeandP.K.T.Mok,“AnSCvoltagedoublerwithpseudo-contin-uousoutputregulationusingathree-stageswitchableopamp,〞IEEEJ.Solid-StateCircuits,vol.42,no.6,pp.1216–1229,June2023.

[30]F.Su,W.-H.Ki,andC.-T.Tsui,“Regulatedswitched-capacitordou-blerwithinterleavingcontrolforcontinuousoutputregulation,〞IEEEJ.Solid-StateCircuits,vol.44,no.4,pp.1112–1120,Apr.2023.

[31]S.Solis-Bustos,J.Silva-Martinez,F.Maloberti,andE.Snchez-Si-nencio,“A60-dBdynamicrangeCMOSsix-order2.4-Hzlow-passlterformedicalapplications,〞IEEETrans.CircuitsSyst.II,vol.47,no.12,pp.1391–1398,Dec.2000.

[32]K.Shu,E.Snchez-Sinencio,J.Silva-Martnez,andH.K.Embabi,“A2.4-GHzmonolithicfractional-Nfrequencysynthesizerwithrobustphase-switchingprescalerandloopcapacitancemultiplier,〞IEEEJ.Solid-StateCircuits,vol.38,no.6,pp.866–874,June2023.

[33]K.ChavaandJ.Silva-Martnez,“AfrequencycompensationschemeforLDOvoltageregulators,〞IEEETrans.CircuitsSyst.I,vol.51,no.6,pp.1041–1050,June2023.

[34]S.-R.Han,C.-N.Chuang,andS.-I.Liu,“Atime-constantcalibratedphase-lockedloopwithafast-lockedtime,〞IEEETrans.CircuitsSyst.II,vol.54,no.1,pp.34–37,Jan.2023.

[35]Y.-T.Wongetal.,“Near-thresholdstartupintegratedboostcon-verterwithslewrateenhancederroramplier,〞inProc.IEEEISCAS’09,May2023,pp.2409–2412.

[36]S.Pennis,“CMOSmultiplierforgroundedcapacitors,〞IETElectron.Lett.,vol.38,pp.765–766,J

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论