




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于地面实测光谱的水系沉积物重金属含量反演Abstract:
Heavymetalsareamajorsourceofpollutioninaquaticsystemsandhavebecomeamajorenvironmentalconcern.Inthisstudy,weproposeamethodtoestimatetheheavymetalcontentofwatersystemsedimentsusingground-basedopticalspectra.FieldmeasurementswerecarriedoutintheYangtzeRiverDeltaofChina.Thespectralreflectancedataofsedimentsampleswerecollectedusingafieldspectrometer,andtheheavymetalcontentwasdeterminedbyX-rayfluorescencespectrometryanalysis.Partialleastsquaresregression(PLSR)andsupportvectorregression(SVR)wereusedtoestablishmodelstopredicttheheavymetalcontentofsedimentsamples.TheresultsshowthatSVRoutperformedPLSR,withthehighestcorrelationcoefficient(R²)of0.87forZncontent,0.82forPbcontentand0.77forCdcontent.Amongthespectralvariables,thebandsinthevisibleandnear-infraredregion(400-900nm)hadthehighestcorrelationwithheavymetalcontent.Therefore,ground-basedopticalspectracanbeusedtoestimateheavymetalcontentinwatersystemsediments,providingacost-effectiveandtime-savingmethodformonitoringwaterpollution.
Keywords:Ground-basedspectralmeasurement,heavymetals,sediment,partialleastsquaresregression,supportvectorregression
Introduction:
Therapidindustrializationandurbanizationinrecentdecadeshaveledtoanincreaseinheavymetalpollutioninwatersystems.Heavymetalssuchaslead(Pb),zinc(Zn),andcadmium(Cd)aretoxicandcanhaveharmfuleffectsontheenvironmentandhumanhealth.Therefore,monitoringandcontrollingtheheavymetalcontentofwatersystemsedimentsiscrucialforwaterresourcemanagementandenvironmentalprotection.
Traditionalheavymetalcontentmeasurementmethods,suchasinductivelycoupledplasmaatomicemissionspectroscopy(ICP-AES)andX-rayfluorescencespectroscopy(XRF),aretime-consuming,expensiveandlimitedtolaboratorysettings.Remotesensingtechnologies,suchasairborneorsatelliteimaging,havebeenwidelyusedforenvironmentalmonitoring,buttheirspatialandspectralresolutionislimitedforsmall-scaleapplications.
Ground-basedopticalspectroscopyprovidesacost-effectiveandtime-savingalternativeformonitoringheavymetalpollutionofwatersystemsediments.Thereflectancespectraofsedimentsamplescanbeusedtoestimatetheirheavymetalcontent,providingarapidandeffectivemethodformonitoringwaterpollution.
Methods:
FieldmeasurementswerecarriedoutintheYangtzeRiverDeltaofChinainMarch,2021.Sedimentsampleswerecollectedfrom10sitesusingagravitycorer.Thespectralreflectancedataofthesedimentsampleswerecollectedusingafieldspectrometer(ASDInc.,Boulder,Colorado,USA)withaspectralrangeof350-2,500nmandaresolutionof3nm.TheheavymetalcontentofthesedimentsampleswasdeterminedusingXRFanalysis.
Partialleastsquaresregression(PLSR)andsupportvectorregression(SVR)wereusedtoestablishmodelsforpredictingtheheavymetalcontentofsedimentsamples.Thespectraldatawerepre-processedusingstandardnormalvariate(SNV)anddetrendednormalization(DN)methods.Thespectralvariableswereselectedusingthesuccessiveprojectionalgorithm(SPA).
Results:
TheresultsshowthatbothPLSRandSVRmodelscanpredictheavymetalcontentinsedimentsamplesusingground-basedopticalspectra.However,SVRoutperformedPLSRintermsofpredictionaccuracy.Thecorrelationcoefficients(R²)oftheSVRmodelswere0.87forZncontent,0.82forPbcontentand0.77forCdcontent.ThePLSRmodelshadcorrelationcoefficientsof0.83,0.77and0.71forZn,PbandCdcontent,respectively.
Thespectralvariableswiththehighestcorrelationwithheavymetalcontentwerelocatedinthevisibleandnear-infraredregion(400-900nm).Thebandsat531nm,557nm,690nmand745nmwerefoundtobemoststronglycorrelatedwithZncontent.Thebandsat537nm,594nm,634nm,and915nmwerefoundtobemoststronglycorrelatedwithPbcontent.Thebandsat526nm,584nm,714nmand842nmwerefoundtobemoststronglycorrelatedwithCdcontent.
Conclusion:
Ourstudydemonstratesthatground-basedopticalspectracanbeusedtoestimateheavymetalcontentinwatersystemsediments,providingacost-effectiveandtime-savingmethodformonitoringwaterpollution.SVRisasuperiormethodforthepredictionofheavymetalcontent,withhigherpredictionaccuracythanPLSR.Thespectralvariablesinthevisibleandnear-infraredregion(400-900nm)aremoststronglycorrelatedwithheavymetalcontent.Thismethodcanbefurtherappliedtootherwatersystemsforpollutionmonitoringandmanagement.Theuseofground-basedopticalspectraforestimatingheavymetalcontentinwatersystemsedimentshasseveraladvantagesovertraditionallaboratoryanalysismethods.Firstly,itisanon-destructivemethodthatdoesnotrequiresamplepreparation,thuspreservingtheintegrityofthesedimentsample.Secondly,itisacost-effectiveandtime-savingmethod,asitcanprovideon-sitemeasurementsandreducetheneedforlaboratoryanalysis.Thirdly,itcanprovidespatiallyresolvedinformation,makingitsuitableformappingthedistributionofheavymetalpollutioninwatersystems.
Theresultsofthisstudysuggestthatsupportvectorregressionisapromisingmethodforaccuratelypredictingheavymetalcontentinwatersystemsedimentsusingground-basedopticalspectra.Moreover,thespectralvariablesinthevisibleandnear-infraredregion(400-900nm)werefoundtobemoststronglycorrelatedwithheavymetalcontent.Thisinformationcanbeusedtooptimizespectraldatacollectionandanalysisinfuturestudies.
Theapplicationofthismethodcanprovidevaluableinformationforthemanagementandmonitoringofwaterresourcepollution.Itcanhelpidentifyhotspotsofheavymetalpollutioninwatersystems,prioritizepollutioncontrolmeasures,andevaluatetheeffectivenessofremediationefforts.Therefore,theuseofground-basedopticalspectraformonitoringheavymetalpollutioninwatersystemscancontributetothesustainabilityofourenvironmentandprotecthumanhealth.Inadditiontoitsadvantagesovertraditionallaboratoryanalysismethods,theuseofground-basedopticalspectraforestimatingheavymetalcontentinwatersystemsedimentsalsohasthepotentialtobeusedforreal-timemonitoringofheavymetalpollution.Thiscouldenabletimelyandeffectiveremediationeffortstobeimplementedtomitigatetheimpactofheavymetalcontaminationonaquaticlife,ecosystemservices,andhumanhealth.
Moreover,theuseofground-basedopticalspectracanalsoaidintheidentificationofthesourcesofheavymetalpollutioninwatersystems.Byanalyzingthespectraldataofsedimentsamplescollectedfromdifferentlocationswithinawatersystem,itmaybepossibletoidentifythesourcesofpollutionbasedonthespectralsignatureoftheheavymetals.Thisinformationcanthenbeusedtodeveloptargetedpollutioncontrolmeasures,suchassourcereductionorpollutantremediation,toreducetheamountsofheavymetalsenteringthewatersystem.
Overall,theuseofground-basedopticalspectraformonitoringandmanagingheavymetalpollutioninwatersystemshassignificantpotentialtoenhancethesustainabilityofourenvironmentandprotecthumanhealth.Thismethodcanprovideefficient,cost-effective,andnon-destructivemeasurementsofheavymetalcontent,whichcaninformremediationeffortsandpollutioncontrolmeasures,aswellascontributetoourunderstandingofthesourcesofpollution.Ground-basedopticalspectracanalsobeusedtostudytheimpactofheavymetalpollutiononaquaticlifeandecosystemhealth.Throughtheanalysisofspectrafromsedimentscollectedindifferentlocationsacrossawatersystem,researcherscangaininsightsintothechemicalcompositionofthesedimentsandthetypesofheavymetalspresent.Theseinsightscanhelpresearchersunderstandhowheavymetalpollutionaffectstheecosystemservicesprovidedbywatersystemsandthehealthofaquaticspecies.
Furthermore,suchstudiescanhelpidentifythekeydriversofheavymetalpollutionandassessthelong-termimpactsofthesepollutantsontheenvironment.Forinstance,byanalyzingthespectraldataofsedimentscollectedovermultipleyearsinagivenlocation,researcherscanobservetrendsinheavymetalconcentrationsovertimeanddeterminethefactorsthatcontributetothesetrends.Thisinformationcanthenbeusedtoinformpolicydecisionsanddevelopeffectiveinterventionstopreventormitigatetheimpactsofheavymetalpollution.
Inconclusion,theuseofground-basedopticalspectraforestimatingheavymetalcontentinwatersystemsedimentshassignificantadvantagesovertraditionallaboratoryanalysistechniques.Itoffersacos
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无人机应用技术2.1.无人机发展分析(棚拍)
- 政治新课程题目及答案
- 真菌趣味题目大全及答案
- 2025年中国萝卜种行业投资前景及策略咨询研究报告
- 大四计算机考试题及答案
- 初中实验考试题库及答案大全
- 初一上美术考试题及答案
- 承德成考考试题及答案解析
- 车辆英文缩写模拟考试题及答案
- 版画理论考试题及答案
- 2025至2030中国生石灰行业市场深度调研及发展趋势与投资方向报告
- 2024年 绍兴市交通控股集团公司招聘考试笔试真题试题含答案
- 维保人员培训管理制度
- 超限模板及高支模安全专项施工方案(论证后)
- 大隐静脉患者的护理查房讲课件
- 2025-2030年中国管道运输行业市场深度分析及发展前景与投资研究报告
- 特性设备安全培训课件
- 九师联盟2024-2025学年高二下学期6月摸底联考英语试题(含答案)
- 老年共病管理中国专家共识(2023)课件
- 中医优才考试试题及答案
- 2025年新高考1卷(新课标Ⅰ卷)英语试卷
评论
0/150
提交评论