




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于地面实测光谱的水系沉积物重金属含量反演Abstract:
Heavymetalsareamajorsourceofpollutioninaquaticsystemsandhavebecomeamajorenvironmentalconcern.Inthisstudy,weproposeamethodtoestimatetheheavymetalcontentofwatersystemsedimentsusingground-basedopticalspectra.FieldmeasurementswerecarriedoutintheYangtzeRiverDeltaofChina.Thespectralreflectancedataofsedimentsampleswerecollectedusingafieldspectrometer,andtheheavymetalcontentwasdeterminedbyX-rayfluorescencespectrometryanalysis.Partialleastsquaresregression(PLSR)andsupportvectorregression(SVR)wereusedtoestablishmodelstopredicttheheavymetalcontentofsedimentsamples.TheresultsshowthatSVRoutperformedPLSR,withthehighestcorrelationcoefficient(R²)of0.87forZncontent,0.82forPbcontentand0.77forCdcontent.Amongthespectralvariables,thebandsinthevisibleandnear-infraredregion(400-900nm)hadthehighestcorrelationwithheavymetalcontent.Therefore,ground-basedopticalspectracanbeusedtoestimateheavymetalcontentinwatersystemsediments,providingacost-effectiveandtime-savingmethodformonitoringwaterpollution.
Keywords:Ground-basedspectralmeasurement,heavymetals,sediment,partialleastsquaresregression,supportvectorregression
Introduction:
Therapidindustrializationandurbanizationinrecentdecadeshaveledtoanincreaseinheavymetalpollutioninwatersystems.Heavymetalssuchaslead(Pb),zinc(Zn),andcadmium(Cd)aretoxicandcanhaveharmfuleffectsontheenvironmentandhumanhealth.Therefore,monitoringandcontrollingtheheavymetalcontentofwatersystemsedimentsiscrucialforwaterresourcemanagementandenvironmentalprotection.
Traditionalheavymetalcontentmeasurementmethods,suchasinductivelycoupledplasmaatomicemissionspectroscopy(ICP-AES)andX-rayfluorescencespectroscopy(XRF),aretime-consuming,expensiveandlimitedtolaboratorysettings.Remotesensingtechnologies,suchasairborneorsatelliteimaging,havebeenwidelyusedforenvironmentalmonitoring,buttheirspatialandspectralresolutionislimitedforsmall-scaleapplications.
Ground-basedopticalspectroscopyprovidesacost-effectiveandtime-savingalternativeformonitoringheavymetalpollutionofwatersystemsediments.Thereflectancespectraofsedimentsamplescanbeusedtoestimatetheirheavymetalcontent,providingarapidandeffectivemethodformonitoringwaterpollution.
Methods:
FieldmeasurementswerecarriedoutintheYangtzeRiverDeltaofChinainMarch,2021.Sedimentsampleswerecollectedfrom10sitesusingagravitycorer.Thespectralreflectancedataofthesedimentsampleswerecollectedusingafieldspectrometer(ASDInc.,Boulder,Colorado,USA)withaspectralrangeof350-2,500nmandaresolutionof3nm.TheheavymetalcontentofthesedimentsampleswasdeterminedusingXRFanalysis.
Partialleastsquaresregression(PLSR)andsupportvectorregression(SVR)wereusedtoestablishmodelsforpredictingtheheavymetalcontentofsedimentsamples.Thespectraldatawerepre-processedusingstandardnormalvariate(SNV)anddetrendednormalization(DN)methods.Thespectralvariableswereselectedusingthesuccessiveprojectionalgorithm(SPA).
Results:
TheresultsshowthatbothPLSRandSVRmodelscanpredictheavymetalcontentinsedimentsamplesusingground-basedopticalspectra.However,SVRoutperformedPLSRintermsofpredictionaccuracy.Thecorrelationcoefficients(R²)oftheSVRmodelswere0.87forZncontent,0.82forPbcontentand0.77forCdcontent.ThePLSRmodelshadcorrelationcoefficientsof0.83,0.77and0.71forZn,PbandCdcontent,respectively.
Thespectralvariableswiththehighestcorrelationwithheavymetalcontentwerelocatedinthevisibleandnear-infraredregion(400-900nm).Thebandsat531nm,557nm,690nmand745nmwerefoundtobemoststronglycorrelatedwithZncontent.Thebandsat537nm,594nm,634nm,and915nmwerefoundtobemoststronglycorrelatedwithPbcontent.Thebandsat526nm,584nm,714nmand842nmwerefoundtobemoststronglycorrelatedwithCdcontent.
Conclusion:
Ourstudydemonstratesthatground-basedopticalspectracanbeusedtoestimateheavymetalcontentinwatersystemsediments,providingacost-effectiveandtime-savingmethodformonitoringwaterpollution.SVRisasuperiormethodforthepredictionofheavymetalcontent,withhigherpredictionaccuracythanPLSR.Thespectralvariablesinthevisibleandnear-infraredregion(400-900nm)aremoststronglycorrelatedwithheavymetalcontent.Thismethodcanbefurtherappliedtootherwatersystemsforpollutionmonitoringandmanagement.Theuseofground-basedopticalspectraforestimatingheavymetalcontentinwatersystemsedimentshasseveraladvantagesovertraditionallaboratoryanalysismethods.Firstly,itisanon-destructivemethodthatdoesnotrequiresamplepreparation,thuspreservingtheintegrityofthesedimentsample.Secondly,itisacost-effectiveandtime-savingmethod,asitcanprovideon-sitemeasurementsandreducetheneedforlaboratoryanalysis.Thirdly,itcanprovidespatiallyresolvedinformation,makingitsuitableformappingthedistributionofheavymetalpollutioninwatersystems.
Theresultsofthisstudysuggestthatsupportvectorregressionisapromisingmethodforaccuratelypredictingheavymetalcontentinwatersystemsedimentsusingground-basedopticalspectra.Moreover,thespectralvariablesinthevisibleandnear-infraredregion(400-900nm)werefoundtobemoststronglycorrelatedwithheavymetalcontent.Thisinformationcanbeusedtooptimizespectraldatacollectionandanalysisinfuturestudies.
Theapplicationofthismethodcanprovidevaluableinformationforthemanagementandmonitoringofwaterresourcepollution.Itcanhelpidentifyhotspotsofheavymetalpollutioninwatersystems,prioritizepollutioncontrolmeasures,andevaluatetheeffectivenessofremediationefforts.Therefore,theuseofground-basedopticalspectraformonitoringheavymetalpollutioninwatersystemscancontributetothesustainabilityofourenvironmentandprotecthumanhealth.Inadditiontoitsadvantagesovertraditionallaboratoryanalysismethods,theuseofground-basedopticalspectraforestimatingheavymetalcontentinwatersystemsedimentsalsohasthepotentialtobeusedforreal-timemonitoringofheavymetalpollution.Thiscouldenabletimelyandeffectiveremediationeffortstobeimplementedtomitigatetheimpactofheavymetalcontaminationonaquaticlife,ecosystemservices,andhumanhealth.
Moreover,theuseofground-basedopticalspectracanalsoaidintheidentificationofthesourcesofheavymetalpollutioninwatersystems.Byanalyzingthespectraldataofsedimentsamplescollectedfromdifferentlocationswithinawatersystem,itmaybepossibletoidentifythesourcesofpollutionbasedonthespectralsignatureoftheheavymetals.Thisinformationcanthenbeusedtodeveloptargetedpollutioncontrolmeasures,suchassourcereductionorpollutantremediation,toreducetheamountsofheavymetalsenteringthewatersystem.
Overall,theuseofground-basedopticalspectraformonitoringandmanagingheavymetalpollutioninwatersystemshassignificantpotentialtoenhancethesustainabilityofourenvironmentandprotecthumanhealth.Thismethodcanprovideefficient,cost-effective,andnon-destructivemeasurementsofheavymetalcontent,whichcaninformremediationeffortsandpollutioncontrolmeasures,aswellascontributetoourunderstandingofthesourcesofpollution.Ground-basedopticalspectracanalsobeusedtostudytheimpactofheavymetalpollutiononaquaticlifeandecosystemhealth.Throughtheanalysisofspectrafromsedimentscollectedindifferentlocationsacrossawatersystem,researcherscangaininsightsintothechemicalcompositionofthesedimentsandthetypesofheavymetalspresent.Theseinsightscanhelpresearchersunderstandhowheavymetalpollutionaffectstheecosystemservicesprovidedbywatersystemsandthehealthofaquaticspecies.
Furthermore,suchstudiescanhelpidentifythekeydriversofheavymetalpollutionandassessthelong-termimpactsofthesepollutantsontheenvironment.Forinstance,byanalyzingthespectraldataofsedimentscollectedovermultipleyearsinagivenlocation,researcherscanobservetrendsinheavymetalconcentrationsovertimeanddeterminethefactorsthatcontributetothesetrends.Thisinformationcanthenbeusedtoinformpolicydecisionsanddevelopeffectiveinterventionstopreventormitigatetheimpactsofheavymetalpollution.
Inconclusion,theuseofground-basedopticalspectraforestimatingheavymetalcontentinwatersystemsedimentshassignificantadvantagesovertraditionallaboratoryanalysistechniques.Itoffersacos
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出口运输协议书范本
- 2025年中文信息处理平台项目合作计划书
- 心理健康趣味测试课件
- 结款委托协议书范本
- 2025年温控仪表合作协议书
- 2025年监测环境污染的卫星系统合作协议书
- 空中课堂拓展知识课件
- 二零二五版人工智能教育平台开发与合作购销合同教育科技
- 2025版公寓租赁合同(含社区健身房月卡赠送)
- 二零二五年度保障性住房买卖置换合同范本
- 医院开荒保洁合同范例
- 明配线管安装样板施工方案
- 针灸科研课题申报书
- 货物搬运装卸劳务承包合同
- 学校食堂食材配送服务方案
- 输尿管结石讲课幻灯片
- 《教育强国建设规划纲要(2024-2035年)》解读知识培训
- 2025年医疗器械产品知识培训计划
- 语文阅读理解与数学问题解决的融合教学研究
- 《习近平法治思想概论(第二版)》 课件 14.第十四章 坚持建设德才兼备的高素质法治工作队伍
- 美的多联机培训教程
评论
0/150
提交评论