下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于地面实测光谱的水系沉积物重金属含量反演Abstract:
Heavymetalsareamajorsourceofpollutioninaquaticsystemsandhavebecomeamajorenvironmentalconcern.Inthisstudy,weproposeamethodtoestimatetheheavymetalcontentofwatersystemsedimentsusingground-basedopticalspectra.FieldmeasurementswerecarriedoutintheYangtzeRiverDeltaofChina.Thespectralreflectancedataofsedimentsampleswerecollectedusingafieldspectrometer,andtheheavymetalcontentwasdeterminedbyX-rayfluorescencespectrometryanalysis.Partialleastsquaresregression(PLSR)andsupportvectorregression(SVR)wereusedtoestablishmodelstopredicttheheavymetalcontentofsedimentsamples.TheresultsshowthatSVRoutperformedPLSR,withthehighestcorrelationcoefficient(R²)of0.87forZncontent,0.82forPbcontentand0.77forCdcontent.Amongthespectralvariables,thebandsinthevisibleandnear-infraredregion(400-900nm)hadthehighestcorrelationwithheavymetalcontent.Therefore,ground-basedopticalspectracanbeusedtoestimateheavymetalcontentinwatersystemsediments,providingacost-effectiveandtime-savingmethodformonitoringwaterpollution.
Keywords:Ground-basedspectralmeasurement,heavymetals,sediment,partialleastsquaresregression,supportvectorregression
Introduction:
Therapidindustrializationandurbanizationinrecentdecadeshaveledtoanincreaseinheavymetalpollutioninwatersystems.Heavymetalssuchaslead(Pb),zinc(Zn),andcadmium(Cd)aretoxicandcanhaveharmfuleffectsontheenvironmentandhumanhealth.Therefore,monitoringandcontrollingtheheavymetalcontentofwatersystemsedimentsiscrucialforwaterresourcemanagementandenvironmentalprotection.
Traditionalheavymetalcontentmeasurementmethods,suchasinductivelycoupledplasmaatomicemissionspectroscopy(ICP-AES)andX-rayfluorescencespectroscopy(XRF),aretime-consuming,expensiveandlimitedtolaboratorysettings.Remotesensingtechnologies,suchasairborneorsatelliteimaging,havebeenwidelyusedforenvironmentalmonitoring,buttheirspatialandspectralresolutionislimitedforsmall-scaleapplications.
Ground-basedopticalspectroscopyprovidesacost-effectiveandtime-savingalternativeformonitoringheavymetalpollutionofwatersystemsediments.Thereflectancespectraofsedimentsamplescanbeusedtoestimatetheirheavymetalcontent,providingarapidandeffectivemethodformonitoringwaterpollution.
Methods:
FieldmeasurementswerecarriedoutintheYangtzeRiverDeltaofChinainMarch,2021.Sedimentsampleswerecollectedfrom10sitesusingagravitycorer.Thespectralreflectancedataofthesedimentsampleswerecollectedusingafieldspectrometer(ASDInc.,Boulder,Colorado,USA)withaspectralrangeof350-2,500nmandaresolutionof3nm.TheheavymetalcontentofthesedimentsampleswasdeterminedusingXRFanalysis.
Partialleastsquaresregression(PLSR)andsupportvectorregression(SVR)wereusedtoestablishmodelsforpredictingtheheavymetalcontentofsedimentsamples.Thespectraldatawerepre-processedusingstandardnormalvariate(SNV)anddetrendednormalization(DN)methods.Thespectralvariableswereselectedusingthesuccessiveprojectionalgorithm(SPA).
Results:
TheresultsshowthatbothPLSRandSVRmodelscanpredictheavymetalcontentinsedimentsamplesusingground-basedopticalspectra.However,SVRoutperformedPLSRintermsofpredictionaccuracy.Thecorrelationcoefficients(R²)oftheSVRmodelswere0.87forZncontent,0.82forPbcontentand0.77forCdcontent.ThePLSRmodelshadcorrelationcoefficientsof0.83,0.77and0.71forZn,PbandCdcontent,respectively.
Thespectralvariableswiththehighestcorrelationwithheavymetalcontentwerelocatedinthevisibleandnear-infraredregion(400-900nm).Thebandsat531nm,557nm,690nmand745nmwerefoundtobemoststronglycorrelatedwithZncontent.Thebandsat537nm,594nm,634nm,and915nmwerefoundtobemoststronglycorrelatedwithPbcontent.Thebandsat526nm,584nm,714nmand842nmwerefoundtobemoststronglycorrelatedwithCdcontent.
Conclusion:
Ourstudydemonstratesthatground-basedopticalspectracanbeusedtoestimateheavymetalcontentinwatersystemsediments,providingacost-effectiveandtime-savingmethodformonitoringwaterpollution.SVRisasuperiormethodforthepredictionofheavymetalcontent,withhigherpredictionaccuracythanPLSR.Thespectralvariablesinthevisibleandnear-infraredregion(400-900nm)aremoststronglycorrelatedwithheavymetalcontent.Thismethodcanbefurtherappliedtootherwatersystemsforpollutionmonitoringandmanagement.Theuseofground-basedopticalspectraforestimatingheavymetalcontentinwatersystemsedimentshasseveraladvantagesovertraditionallaboratoryanalysismethods.Firstly,itisanon-destructivemethodthatdoesnotrequiresamplepreparation,thuspreservingtheintegrityofthesedimentsample.Secondly,itisacost-effectiveandtime-savingmethod,asitcanprovideon-sitemeasurementsandreducetheneedforlaboratoryanalysis.Thirdly,itcanprovidespatiallyresolvedinformation,makingitsuitableformappingthedistributionofheavymetalpollutioninwatersystems.
Theresultsofthisstudysuggestthatsupportvectorregressionisapromisingmethodforaccuratelypredictingheavymetalcontentinwatersystemsedimentsusingground-basedopticalspectra.Moreover,thespectralvariablesinthevisibleandnear-infraredregion(400-900nm)werefoundtobemoststronglycorrelatedwithheavymetalcontent.Thisinformationcanbeusedtooptimizespectraldatacollectionandanalysisinfuturestudies.
Theapplicationofthismethodcanprovidevaluableinformationforthemanagementandmonitoringofwaterresourcepollution.Itcanhelpidentifyhotspotsofheavymetalpollutioninwatersystems,prioritizepollutioncontrolmeasures,andevaluatetheeffectivenessofremediationefforts.Therefore,theuseofground-basedopticalspectraformonitoringheavymetalpollutioninwatersystemscancontributetothesustainabilityofourenvironmentandprotecthumanhealth.Inadditiontoitsadvantagesovertraditionallaboratoryanalysismethods,theuseofground-basedopticalspectraforestimatingheavymetalcontentinwatersystemsedimentsalsohasthepotentialtobeusedforreal-timemonitoringofheavymetalpollution.Thiscouldenabletimelyandeffectiveremediationeffortstobeimplementedtomitigatetheimpactofheavymetalcontaminationonaquaticlife,ecosystemservices,andhumanhealth.
Moreover,theuseofground-basedopticalspectracanalsoaidintheidentificationofthesourcesofheavymetalpollutioninwatersystems.Byanalyzingthespectraldataofsedimentsamplescollectedfromdifferentlocationswithinawatersystem,itmaybepossibletoidentifythesourcesofpollutionbasedonthespectralsignatureoftheheavymetals.Thisinformationcanthenbeusedtodeveloptargetedpollutioncontrolmeasures,suchassourcereductionorpollutantremediation,toreducetheamountsofheavymetalsenteringthewatersystem.
Overall,theuseofground-basedopticalspectraformonitoringandmanagingheavymetalpollutioninwatersystemshassignificantpotentialtoenhancethesustainabilityofourenvironmentandprotecthumanhealth.Thismethodcanprovideefficient,cost-effective,andnon-destructivemeasurementsofheavymetalcontent,whichcaninformremediationeffortsandpollutioncontrolmeasures,aswellascontributetoourunderstandingofthesourcesofpollution.Ground-basedopticalspectracanalsobeusedtostudytheimpactofheavymetalpollutiononaquaticlifeandecosystemhealth.Throughtheanalysisofspectrafromsedimentscollectedindifferentlocationsacrossawatersystem,researcherscangaininsightsintothechemicalcompositionofthesedimentsandthetypesofheavymetalspresent.Theseinsightscanhelpresearchersunderstandhowheavymetalpollutionaffectstheecosystemservicesprovidedbywatersystemsandthehealthofaquaticspecies.
Furthermore,suchstudiescanhelpidentifythekeydriversofheavymetalpollutionandassessthelong-termimpactsofthesepollutantsontheenvironment.Forinstance,byanalyzingthespectraldataofsedimentscollectedovermultipleyearsinagivenlocation,researcherscanobservetrendsinheavymetalconcentrationsovertimeanddeterminethefactorsthatcontributetothesetrends.Thisinformationcanthenbeusedtoinformpolicydecisionsanddevelopeffectiveinterventionstopreventormitigatetheimpactsofheavymetalpollution.
Inconclusion,theuseofground-basedopticalspectraforestimatingheavymetalcontentinwatersystemsedimentshassignificantadvantagesovertraditionallaboratoryanalysistechniques.Itoffersacos
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026秋招:内蒙古产权交易中心公司笔试题及答案
- 2026秋招:辽宁环保集团笔试题及答案
- 2026秋招:利华益集团试题及答案
- 2026秋招:江苏三木集团面试题及答案
- 做账实操-图文快印店公司会计账务处理分录
- 生物信息平台用户权限管理
- 《2025年企业人力资源管理师(中级)技能操作试卷及答案》
- 2025年集成电路设计与集成系统(芯片架构与工艺)试卷及答案
- 2025年公路工程隧道设计与施工试题及答案
- 2026秋招:汇通达网络面试题及答案
- 全球AI应用平台市场全景图与趋势洞察报告
- 产品防护控制程序培训课件
- ISO-6336-5-2003正齿轮和斜齿轮载荷能力的计算-第五部分(中文)
- 轨道线路养护维修作业-改道作业
- 2023-2024学年上海市闵行区四上数学期末综合测试试题含答案
- 中铝中州矿业有限公司禹州市方山铝土矿矿山地质环境保护和土地复垦方案
- 解除劳动合同证明电子版(6篇)
- 呼吸科规培疑难病例讨论
- 基于PLC控制的小型钻床机械设计
- DB11T 290-2005山区生态公益林抚育技术规程
- 开放大学(原电视大学)行政管理实务期末复习资料所有单
评论
0/150
提交评论