




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于地面实测光谱的水系沉积物重金属含量反演Abstract:
Heavymetalsareamajorsourceofpollutioninaquaticsystemsandhavebecomeamajorenvironmentalconcern.Inthisstudy,weproposeamethodtoestimatetheheavymetalcontentofwatersystemsedimentsusingground-basedopticalspectra.FieldmeasurementswerecarriedoutintheYangtzeRiverDeltaofChina.Thespectralreflectancedataofsedimentsampleswerecollectedusingafieldspectrometer,andtheheavymetalcontentwasdeterminedbyX-rayfluorescencespectrometryanalysis.Partialleastsquaresregression(PLSR)andsupportvectorregression(SVR)wereusedtoestablishmodelstopredicttheheavymetalcontentofsedimentsamples.TheresultsshowthatSVRoutperformedPLSR,withthehighestcorrelationcoefficient(R²)of0.87forZncontent,0.82forPbcontentand0.77forCdcontent.Amongthespectralvariables,thebandsinthevisibleandnear-infraredregion(400-900nm)hadthehighestcorrelationwithheavymetalcontent.Therefore,ground-basedopticalspectracanbeusedtoestimateheavymetalcontentinwatersystemsediments,providingacost-effectiveandtime-savingmethodformonitoringwaterpollution.
Keywords:Ground-basedspectralmeasurement,heavymetals,sediment,partialleastsquaresregression,supportvectorregression
Introduction:
Therapidindustrializationandurbanizationinrecentdecadeshaveledtoanincreaseinheavymetalpollutioninwatersystems.Heavymetalssuchaslead(Pb),zinc(Zn),andcadmium(Cd)aretoxicandcanhaveharmfuleffectsontheenvironmentandhumanhealth.Therefore,monitoringandcontrollingtheheavymetalcontentofwatersystemsedimentsiscrucialforwaterresourcemanagementandenvironmentalprotection.
Traditionalheavymetalcontentmeasurementmethods,suchasinductivelycoupledplasmaatomicemissionspectroscopy(ICP-AES)andX-rayfluorescencespectroscopy(XRF),aretime-consuming,expensiveandlimitedtolaboratorysettings.Remotesensingtechnologies,suchasairborneorsatelliteimaging,havebeenwidelyusedforenvironmentalmonitoring,buttheirspatialandspectralresolutionislimitedforsmall-scaleapplications.
Ground-basedopticalspectroscopyprovidesacost-effectiveandtime-savingalternativeformonitoringheavymetalpollutionofwatersystemsediments.Thereflectancespectraofsedimentsamplescanbeusedtoestimatetheirheavymetalcontent,providingarapidandeffectivemethodformonitoringwaterpollution.
Methods:
FieldmeasurementswerecarriedoutintheYangtzeRiverDeltaofChinainMarch,2021.Sedimentsampleswerecollectedfrom10sitesusingagravitycorer.Thespectralreflectancedataofthesedimentsampleswerecollectedusingafieldspectrometer(ASDInc.,Boulder,Colorado,USA)withaspectralrangeof350-2,500nmandaresolutionof3nm.TheheavymetalcontentofthesedimentsampleswasdeterminedusingXRFanalysis.
Partialleastsquaresregression(PLSR)andsupportvectorregression(SVR)wereusedtoestablishmodelsforpredictingtheheavymetalcontentofsedimentsamples.Thespectraldatawerepre-processedusingstandardnormalvariate(SNV)anddetrendednormalization(DN)methods.Thespectralvariableswereselectedusingthesuccessiveprojectionalgorithm(SPA).
Results:
TheresultsshowthatbothPLSRandSVRmodelscanpredictheavymetalcontentinsedimentsamplesusingground-basedopticalspectra.However,SVRoutperformedPLSRintermsofpredictionaccuracy.Thecorrelationcoefficients(R²)oftheSVRmodelswere0.87forZncontent,0.82forPbcontentand0.77forCdcontent.ThePLSRmodelshadcorrelationcoefficientsof0.83,0.77and0.71forZn,PbandCdcontent,respectively.
Thespectralvariableswiththehighestcorrelationwithheavymetalcontentwerelocatedinthevisibleandnear-infraredregion(400-900nm).Thebandsat531nm,557nm,690nmand745nmwerefoundtobemoststronglycorrelatedwithZncontent.Thebandsat537nm,594nm,634nm,and915nmwerefoundtobemoststronglycorrelatedwithPbcontent.Thebandsat526nm,584nm,714nmand842nmwerefoundtobemoststronglycorrelatedwithCdcontent.
Conclusion:
Ourstudydemonstratesthatground-basedopticalspectracanbeusedtoestimateheavymetalcontentinwatersystemsediments,providingacost-effectiveandtime-savingmethodformonitoringwaterpollution.SVRisasuperiormethodforthepredictionofheavymetalcontent,withhigherpredictionaccuracythanPLSR.Thespectralvariablesinthevisibleandnear-infraredregion(400-900nm)aremoststronglycorrelatedwithheavymetalcontent.Thismethodcanbefurtherappliedtootherwatersystemsforpollutionmonitoringandmanagement.Theuseofground-basedopticalspectraforestimatingheavymetalcontentinwatersystemsedimentshasseveraladvantagesovertraditionallaboratoryanalysismethods.Firstly,itisanon-destructivemethodthatdoesnotrequiresamplepreparation,thuspreservingtheintegrityofthesedimentsample.Secondly,itisacost-effectiveandtime-savingmethod,asitcanprovideon-sitemeasurementsandreducetheneedforlaboratoryanalysis.Thirdly,itcanprovidespatiallyresolvedinformation,makingitsuitableformappingthedistributionofheavymetalpollutioninwatersystems.
Theresultsofthisstudysuggestthatsupportvectorregressionisapromisingmethodforaccuratelypredictingheavymetalcontentinwatersystemsedimentsusingground-basedopticalspectra.Moreover,thespectralvariablesinthevisibleandnear-infraredregion(400-900nm)werefoundtobemoststronglycorrelatedwithheavymetalcontent.Thisinformationcanbeusedtooptimizespectraldatacollectionandanalysisinfuturestudies.
Theapplicationofthismethodcanprovidevaluableinformationforthemanagementandmonitoringofwaterresourcepollution.Itcanhelpidentifyhotspotsofheavymetalpollutioninwatersystems,prioritizepollutioncontrolmeasures,andevaluatetheeffectivenessofremediationefforts.Therefore,theuseofground-basedopticalspectraformonitoringheavymetalpollutioninwatersystemscancontributetothesustainabilityofourenvironmentandprotecthumanhealth.Inadditiontoitsadvantagesovertraditionallaboratoryanalysismethods,theuseofground-basedopticalspectraforestimatingheavymetalcontentinwatersystemsedimentsalsohasthepotentialtobeusedforreal-timemonitoringofheavymetalpollution.Thiscouldenabletimelyandeffectiveremediationeffortstobeimplementedtomitigatetheimpactofheavymetalcontaminationonaquaticlife,ecosystemservices,andhumanhealth.
Moreover,theuseofground-basedopticalspectracanalsoaidintheidentificationofthesourcesofheavymetalpollutioninwatersystems.Byanalyzingthespectraldataofsedimentsamplescollectedfromdifferentlocationswithinawatersystem,itmaybepossibletoidentifythesourcesofpollutionbasedonthespectralsignatureoftheheavymetals.Thisinformationcanthenbeusedtodeveloptargetedpollutioncontrolmeasures,suchassourcereductionorpollutantremediation,toreducetheamountsofheavymetalsenteringthewatersystem.
Overall,theuseofground-basedopticalspectraformonitoringandmanagingheavymetalpollutioninwatersystemshassignificantpotentialtoenhancethesustainabilityofourenvironmentandprotecthumanhealth.Thismethodcanprovideefficient,cost-effective,andnon-destructivemeasurementsofheavymetalcontent,whichcaninformremediationeffortsandpollutioncontrolmeasures,aswellascontributetoourunderstandingofthesourcesofpollution.Ground-basedopticalspectracanalsobeusedtostudytheimpactofheavymetalpollutiononaquaticlifeandecosystemhealth.Throughtheanalysisofspectrafromsedimentscollectedindifferentlocationsacrossawatersystem,researcherscangaininsightsintothechemicalcompositionofthesedimentsandthetypesofheavymetalspresent.Theseinsightscanhelpresearchersunderstandhowheavymetalpollutionaffectstheecosystemservicesprovidedbywatersystemsandthehealthofaquaticspecies.
Furthermore,suchstudiescanhelpidentifythekeydriversofheavymetalpollutionandassessthelong-termimpactsofthesepollutantsontheenvironment.Forinstance,byanalyzingthespectraldataofsedimentscollectedovermultipleyearsinagivenlocation,researcherscanobservetrendsinheavymetalconcentrationsovertimeanddeterminethefactorsthatcontributetothesetrends.Thisinformationcanthenbeusedtoinformpolicydecisionsanddevelopeffectiveinterventionstopreventormitigatetheimpactsofheavymetalpollution.
Inconclusion,theuseofground-basedopticalspectraforestimatingheavymetalcontentinwatersystemsedimentshassignificantadvantagesovertraditionallaboratoryanalysistechniques.Itoffersacos
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 麻风病防治教学课件
- 二零二五年度新能源汽车充电桩建设承包合同范本
- 2025年度导游带团夜间游览服务合同范本
- 二零二五年度节能环保门楼工程承包合同
- 2025版菊花鲜切花加工与销售合同
- 二零二五年度钢结构建筑项目全过程管理合同范本
- 二零二五版合伙人利润分成与权益约定协议范本
- 2025年度金融机构单位借款担保合同
- 2025年度城市更新项目包工包料施工合同
- 二零二五年度出租车租赁与城市交通设施建设合作合同范本
- 2024年度可持续发展报告-泡泡玛特-
- 2025至2030中国西餐厅行业发展分析及发展趋势分析与未来投资战略咨询研究报告
- 生物炭固碳机制-洞察及研究
- 与客户对账管理制度
- 2025年云南中考道德与法治试题及答案
- Q-GDW10250-2025 输变电工程建设安全文明施工规程
- 2025-2030年中国潜水设备行业市场现状供需分析及投资评估规划分析研究报告
- 2025年新高考1卷(新课标Ⅰ卷)英语试卷
- 融媒体笔试试题及答案
- 法律退款合同协议书怎么写
- DB62T 3161-2019 高原旱区园林绿化养护及验收标准
评论
0/150
提交评论