




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
刚体绕汇交轴转动的角速度矢量的合成图4-12刚体绕汇交轴转动在考察某刚体B的绕定点O运动时,如果有两个参考基,其中参考基『为不动的惯性基,称为定基,另一个参考基为肘,它相对基*作绕点O定点运动,称为动基。作定点运动的刚体的连体基为矿。连体基产相对于定基『的角速度矢量记为质,称其为刚体B的绝对角速度矢量。连体基『相对于动基聲的角速度矢量记为苗,称其为刚体B的相对角速度矢量。动基肘相对于定基产的绝对角速度矢量记为詡,称其为刚体B的牵连角速度矢量。从瞬轴的角度,如果认为动基与定基瞬时固结,刚体绕沿幫的瞬轴转动;如果认为连体基与动基瞬时固结,刚体作绕沿詡的瞬轴转动。上述两瞬轴汇交于点O,刚体B在该瞬时同时绕两瞬轴转动,故称这种运动为刚体绕汇交轴转动。由角速度矢量叠加原理式(4.1-22),有(4.1-34)由此可得到如下结论:对于刚体绕汇交轴转动,刚体的绝对角速度等于该刚体相对动基的相对角速度与牵连角速度之和。它称为绕汇交轴转动合成定理角速度与欧拉角姿态坐标导数间的关系本节将介绍定点运动刚体的角速度与姿态坐标导数间的关系。在4.1.3节已经指出,时间t刚体的角速度矢量心是平均角速度矢量的总极限。后者的定义式(4.1-12)描述了在非常小的时间间隔庶内,由时刻t连体基訐绕一次转动矢量0转过一次转动角分到达时刻才+竝的连体基評的变化过程。根据4.1.2节关于描述姿态的欧拉角的定义,上述过程也可以认为连体基訐先绕基矢量『转过有限角A屮,再绕基鈔的基矢量科转过有限角A0,最后绕基汀的基矢量暫转过有限角姉,至U达时刻r+竝的连体基評。故平均速度的定义式(4.1-12)可表为占=些丈+空严+如計&&&代入绝对角速度的定义式(4・1T3)(5= +—zlR谑"+费+欷 (4.1—35)由定轴转动的角速度的定义式(3.3—2)和图4-4所示,基計相对于基沪、基*相对于基旷和基『相对于基訐的角速度矢量分别为即=辺=谟“,矿二护二和,护=材=迸 (4.1—36)故由角速度叠加原理式(4^33!也可得到上式。由式(4・1—36),式(4・1-35)也可表为
E=1蛙+陵+材基矢量塑、和严在各自连体基『的坐标阵分别为^=(001)',故=(10叶,^=(001)1由式(1.3-13)与(1.1-18),聲和〒•在连体基訐上的坐标阵为刊=屮)T严=[A-A^芒=肚町口町严,时=口町就将式(4.1-38)和式(4.1-3)与(4.1-4)代入上式,有=(£in&£in0sin^cos^uo询’,=(匚口帥-sin^0)1 (4.1一39)刚体定点运动的欧拉运动学方程令角速度矢量任在连体基孑的坐标阵记为(4.1-37)(4.1-38)(4.1-40)(4.1-37)(4.1-38)考虑到式(4・1-38)至(4・1-40),经整理,矢量式(4.1-37)在连体基訂的坐标式可表为Ginggin币 cos^Ginggin币 cos^小sinScos^-sin^0lcos3 0 I】(4.1-41)上式给出了角速度矢量负在连体基犷的坐标阵与欧拉姿态坐标及其导数间的关系。由上式可解得(4.1-42)(4.1-42)这是以欧拉姿态坐标为变量的一阶微分方程,称为刚体定点运动的欧拉运动学方程。在方程中,角速度矢量在连体基&的三个坐标为方程的参变量。当它们的时间历程给定后,通过对方程组(4.1-42)进行积分,可得到欧拉姿态坐标的时间历程。由式(4.1-42)可知,章动角不能为零。上述的推导过程同样可在参考基『上进行。将角速度矢量航在连体基『的坐标阵记为(4.1-43)(4.1-43)角速度矢量游在连体基『的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省赣州市六校2024-2025学年高三质量监测(二)物理试题含解析
- 四川三河职业学院《材料应用设计实训(1)》2023-2024学年第二学期期末试卷
- 辽宁省大连市第七十六中学2025年初三模拟考试(一)化学试题文试卷含解析
- 江苏省苏州市工业园区重点达标名校2024-2025学年中考第二次模拟考试化学试题理试题含解析
- 山东省威海市文登市2024-2025学年数学三下期末检测试题含解析
- 内蒙古赤峰市2024-2025学年下学期高三化学试题第二次适应性测试试卷含解析
- 昆山登云科技职业学院《工笔人物创作与表现》2023-2024学年第一学期期末试卷
- 武汉生物工程学院《林业专业外语》2023-2024学年第二学期期末试卷
- 四川省南充市西充县2025年四下数学期末综合测试试题含解析
- 二零二五土地转让合同书范例
- 家庭教育指导师模拟题07附有答案
- GB/T 20878-2024不锈钢牌号及化学成分
- 反应釜50L验证方案
- 矿山协议合同范本
- 《运筹学》全套课件(完整版)
- DZ∕T 0382-2021 固体矿产勘查地质填图规范(正式版)
- 2024春期国开电大《应用写作(汉语)》形考任务1-6参考答案
- 《研学旅行课程设计》课件-研学课程方案设计
- 川教版《生命生态安全》九年级下册第十课树立生态文明意识 课件
- GB/T 9442-2024铸造用硅砂
- 中国椎管内分娩镇痛专家共识(2020版)
评论
0/150
提交评论