复变函数习题答案_第1页
复变函数习题答案_第2页
复变函数习题答案_第3页
复变函数习题答案_第4页
复变函数习题答案_第5页
已阅读5页,还剩41页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文格式为Word版,下载可任意编辑——复变函数习题答案习题一

1.用复数的代数形式a+ib表示以下复数

e?iπ/4;3?5i7i?1;(2?i)(4?3i);1i?31?i.

①解:e?π4i2?2?π??π??cos????isin????????22?4??4???22i???i?22?②解:

3?5i7i?1??3?5i??1?7i??1+7i??1?7i???1625?1325i

③解:?2?i??4?3i??8?3?4i?6i?5?10i④解:

1i?31?i=?i?3?1?i?2?32?52i

2.求以下各复数的实部和虚部(z=x+iy)

3???1?i3?n3??1?i(a?);z;??;??;i.z?a?2??2?z?a33

①解:∵设z=x+iy则

z?az?a??x?iy??a?x?iy??a2??x?a??iy?x?a??iy22????x?a??iy?????x?a??iy???x?a?2?y2

x?a?y?z?a??∴Re??22?z?a??x?a??y,Im??z?a????z?a?2xy?x?a?2?y2.

②解:设z=x+iy

∵z3??x?iy???x?iy??x?iy???x2?y2?2xyi??x?iy?

?x?x?y23232??2xy22222??y?x?y??2xy?i??3?x?3xy??3xy?y2?i3

∴Re?z3??x3?3xy2,

3Im?z??3x2y?y.

3??1?i3??③解:∵????2????1?i38?31???1?3???1???8???3?22???3???1??????3??3?3????

?18?8?0i??1

∴Re???1?i3??1,???2??3??1?i3?Im??0.???2???3???1???3??1?3??22??3???1??3??3?3?i④解:∵???1?i3???????2??8

?18?8?0i??1

∴Re??1?i3???1,Im?????1?i3??2?????0.?2???in???1?k⑤解:∵?,n?2k?n?2k?1k??.

?k???1??i,∴当n?2k时,Re?in????1?k,Im?in??0;

当n?2k?1时,Re?in??0,Im?in????1?k.

3.求以下复数的模和共轭复数

?2?i;?3;(2?i)(3?2i);

①解:?2?i?4?1?5.

?2?i??2?i

②解:?3?3

?3??3

③解:?2?i??3?2i??2?i3?2i?5?13?65.

?2?i??3?2i???2?i???3?2i???2?i???3?2i??4?7i④解:

1?i?1?i?2222

?1?i????1?i?1?i?2??2?2

4、证明:当且仅当z?z时,z才是实数.证明:若z?z,设z?x?iy,

则有x?iy?x?iy,从而有?2y?i?0,即y=0

??

1?i2.

∴z=x为实数.

若z=x,x∈?,则z?x?x.∴z?z.命题成立.

≤5、设z,w∈?,证明:z?w

2z?w

证明:∵z?w??z?w???z?w???z?w??z?w?

?z?z?z?w?w?z?w?w

?z?z≤2?zw?z?w?w?w22??2Re?z?w??2z?w?2z?w

?2

z2?w?w?w2

?z?22?z?2∴z?w≤z?w.

6、设z,w∈?,证明以下不等式.

z?wz?w2?z?z2?2Rez?w?w?2Rez?w?w2??2

22??2z?w2?z?w?2z?2?w2?

2并给出最终一个等式的几何解释.

证明:z?w?z?2Re?z?w??w在上面第五题的证明已经证明白.

22下面证z?w?z?2Re?z?w??w.

222

∵z?w??z?w???z?w???z?w??z?w?

2?z2?z?w?w?z?w2

2?z2?2Rez?w?w2??2.从而得证.

∴z?w?z?w?2z?w?22?

几何意义:平行四边形两对角线平方的和等于各边的平方的和.

7.将以下复数表示为指数形式或三角形式

3?5i7i?1;i;?1;?8π(1?3i);2π2π??cos?isin??.

99??3①解:

3?5i7i?1??3?5i??1?7i?

?1?7i??1?7i??175?ei???38?16i50?19?8i25其中??π?arctan819.

②解:i?ei??其中??

iπ2π2.

i?e

23③解:?1?eiπ?eπi

④解:?8π?1?3i??16π???π.

∴?8π?1?3i??16π?e3?23πi

2π2π???isin⑤解:?cos?99??2π2π???isin?cos?99??3解:∵?1.

i?π.32π2π??9?isin?1?e?e∴?cos?99??322π3i

8.计算:(1)i的三次根;(2)-1的三次根;(3)3?⑴i的三次根.

13i的平方根.

解:3i??cos??π2?isinπ?3??cos2?2kπ?3π2?isin2kπ?3π2?k56?0,1,2?

3?12i

∴z1?cos

z3?cosπ696?isinπ6?96132?12i.z2?cos3?12i

56π?isinπ??2

π?isinπ??2⑵-1的三次根

解:?1??cosπ?isinπ?3?cos32kπ+π33i

?isin2kπ?π3?k?0,1,2?

∴z1?cos

π3?isinπ3?12?2z2?cosπ?isinπ??1

z3?cos53π?isin53π??12?32i

⑶3?3i的平方根.解:3??223i=6????22??i????12π6?e4

i

∴3?13i??π6?e4i?ππ??2kπ?2kπ??4?isin4??64??cos??22?11π?k?0,1?

iππ??∴z1?6??cos?isin??64?e888??411

9

πi99??z2?6??cosπ?isinπ??64?e8.

88??49.设z?e

i2πnn?1?0,n?2.证明:1?z???z证明:∵z?e

i?2πn∴zn?1,即zn?1?0.

∴?z?1??1?z???zn?1??0

又∵n≥2.∴z≠1

从而1?z?z2+??zn?1?0

11.设?是圆周{z:z?c?r},r?0,a?c?rei?.令

???z?a?L???z:Im???0?,

?b???其中b?e.求出L?在a切于圆周?的关于?的充分必要条件.

解:如下图.

i?

由于L?={z:Im??z?a???b?=0}表示通过点a且方向与b同向的直线,要使得直线在a处与

圆相切,则CA⊥L?.过C作直线平行L?,则有∠BCD=β,∠ACB=90°

故α-β=90°

所以L?在α处切于圆周T的关于β的充要条件是α-β=90°.

12.指出以下各式中点z所确定的平面图形,并作出草图.

(1)argz?π;(2)z?1?z;(3)1?z?i|?2;(4)Rez?Imz;(5)Imz?1且z?2.

解:

(1)、argz=π.表示负实轴.

(2)、|z-1|=|z|.表示直线z=

12.

(3)、1Imz.

解:表示直线y=x的右下半平面

5、Imz>1,且|z|f?(z)?(z?2)?(z?1)(z?1)?(z?1)[(z?1)(z?1)]?(z?1)(z?1)?2z?5z?4z?3(z?1)(z?1)3z?85z?7752223222222

?(3)f(z)?.

3(5z?7)?(3z?8)5(5z?7)2解:f(z)除z=(4)f(z)?外四处可导,且f?(z)??ix?yx?y22??61(5z?7)2.

x?yx?y22.

x?iy?i(x?iy)x?y22解:由于f(z)?x?y?i(x?y)x?y22??(x?iy)(1?i)x?y22?z(1?i)z2?1?iz.

所以f(z)除z=0外四处可导,且f?(z)??

6.试判断以下函数的可导性与解析性.(1)f(z)?xy2?ix2y;

(1?i)z2.

解:u(x,y)?xy2,v(x,y)?x2y在全平面上可微.

?y?x?y,2?u?y?u?x?2xy,??v?y?v?x?u?y?2xy,?v?x?v?y?x2

所以要使得,

??,

只有当z=0时,

从而f(z)在z=0处可导,在全平面上不解析.(2)f(z)?x2?iy2.

解:u(x,y)?x2,v(x,y)?y2在全平面上可微.

?u?x?2x,?u?y?0,?v?x?0,??v?y?v?u?y?y?2y??.

只有当z=0时,即(0,0)处有

?u?x,

?v?y所以f(z)在z=0处可导,在全平面上不解析.(3)f(z)?2x3?3iy3;

解:u(x,y)?2x3,v(x,y)?3y3在全平面上可微.

?u?x?6x,2?u?y?0,?v?x?9y,2?v?y?0

所以只有当2x??3y时,才满足C-R方程.

从而f(z)在2x?3y?0处可导,在全平面不解析.(4)f(z)?z?z2.

解:设z?x?iy,则f(z)?(x?iy)?(x?iy)2?x3?xy2?i(y3?x2y)

3232u(x,y)?x?xy,v(x,y)?y?xy

?u?x?3x?y,22?u?y?2xy,?v?x?2xy,?v?y?3y?x22

所以只有当z=0时才满足C-R方程.从而f(z)在z=0处可导,四处不解析.

7.证明区域D内满足以下条件之一的解析函数必为常数.(1)f?(z)?0;

证明:由于f?(z)?0,所以

?u?x??u?y?0,

?v?x??v?y?0.

所以u,v为常数,于是f(z)为常数.

(2)f(z)解析.

证明:设f(z)?u?iv在D内解析,则

?u?x?u?y?u?x??(?v)?y??u?x???v?y

???(?v)?x?v?y,???u?y?v?y?

?v?x??

?u?x?v?y??u?y,?u?y??u?y???v?x?v?x?而f(z)为解析函数,所以所以

?v?x???v?x,?v?y??

?v?y?0,即

?u?x?

从而v为常数,u为常数,即f(z)为常数.

(3)Ref(z)=常数.

证明:由于Ref(z)为常数,即u=C1,由于f(z)解析,C-R条件成立。故从而f(z)为常数.

(4)Imf(z)=常数.

?u?x?u?x???u?y?0?0

?u?y即u=C2

证明:与(3)类似,由v=C1得由于f(z)解析,由C-R方程得所以f(z)为常数.

5.|f(z)|=常数.

?u?x?v?x???u?y?v?y?0

?0,即u=C2

证明:由于|f(z)|=C,对C进行探讨.若C=0,则u=0,v=0,f(z)=0为常数.

若C?0,则f(z)?0,但f(z)?f(z)?C2,即u2+v2=C2则两边对x,y分别求偏导数,有

2u??u?x?2v??v?x?0,2u??u?y?2v??v?y?0

利用C-R条件,由于f(z)在D内解析,有

?u?x??v?y?u?y???v?x

?u?v?u??v??0???x?x所以?

?u?v?v??u??0??x??x所以

?u?x?0,?v?x?0

即u=C1,v=C2,于是f(z)为常数.

(6)argf(z)=常数.

证明:argf(z)=常数,即arctan???C,

?u??v?于是

??u?得??u??(v/u)?1?(v/u)???v?x?v?y?2u?(u??2?v?x?x222u(u?v)?v??u)?u(u22?v?y2?v?u?y2)?0

u(u?v)?u????u?????v?x?v?x?v??v??u?x?u?x?v??v??v?x?u?x?u?y??0?0C-R条件→

?0?v?y?0,即

?0解得

?u?x?u?y?u,v为常数,于是f(z)为常数.

8.设f(z)=my3+nx2y+i(x3+lxy2)在z平面上解析,求m,n,l的值.

解:由于f(z)解析,从而满足C-R条件.

?u?x?v?x?u?x?2nxy,22?u?y?3my?nx?v?y22

?3x?ly,?v?y?n?l

?2lxy

??u?y???v?x?n??3,l??3m

所以n??3,l??3,m?1.

9.试证以下函数在z平面上解析,并求其导数.(1)f(z)=x3+3x2yi-3xy2-y3i

证明:u(x,y)=x3-3xy2,v(x,y)=3x2y-y3在全平面可微,且

?u?x?3x?3y,22?u?y??6xy,?v?x?6xy,?v?y?3x?3y22

所以f(z)在全平面上满足C-R方程,四处可导,四处解析.

f?(z)??u?x?i?v?x?3x?3y?6xyi?3(x?y?2xyi)?3z22222.

(2)f(z)?ex(xcosy?ysiny)?iex(ycosy?xsiny).证明:u(x,y)?ex(xcosy?ysiny),?u?x?u?yxxxv(x,y)=e(ycosy?xsiny)四处可微,且

x?e(xcosy?ysiny)?e(cosy)?e(xcosy?ysiny?cosy)?e(?xsiny?siny?ycosy)?e(?xsiny?siny?ycosy)xxxxx

?v?x?v?y?e(ycosy?xsiny)?e(siny)?e(ycosy?xsiny?siny)?e(cosy?y(?siny)?xcosy)?e(cosy?ysiny?xcosy)?u?x??v?yxx

所以,

?u?y???v?x

所以f(z)四处可导,四处解析.

f?(z)??u?xxz?i?v?xz?e(xcosy?ysiny?cosy)?i(e(ycosy?xsiny?siny))xxxxxxx?ecosy?iesiny?x(ecosy?iesiny)?iy(ecosy?iesiny)?e?xe?iye?e(1?z)zz

?x3?y3?i?x3?y3?,?2210.设f?z???x?y?0.?z?0.z?0.

求证:(1)f(z)在z=0处连续.

(2)f(z)在z=0处满足柯西—黎曼方程.

(3)f′(0)不存在.

z?0证明.(1)∵limf(z)?而

limu?x,y???x,y???0,0?limu?x,y??iv?x,y?

332?x,y???0,0??x,y???0,0?limx?yx?y2

xy???x?y?1???2222??x?yx?y??x?yx?y3x?y33332∴0≤2≤32x?y

?x,y???0,0?limx?yx?y32232?032

同理∴

?x,y???0,0?limx?yx?y?0?x,y???0,0?limf?z??0?f?0?

∴f(z)在z=0处连续.

(2)考察极限limz?0f(z)?f?0?z

当z沿虚轴趋向于零时,z=iy,有

lim1iyy?0????lim??f?iy??f0?y?01iy?3?y?1?i?y2?1?i.

当z沿实轴趋向于零时,z=x,有

lim1xx?0?f?x??f?0???1?i

?u?x?i??v?x,?v?y?i?u?y它们分别为∴

?u?x??v?y,

?u?y???v?x

∴满足C-R条件.

(3)当z沿y=x趋向于零时,有

x?y?0limf?x?ix??f?0,0?x?ix?f?z?lim33x?1?i??x?1?i?32x?1?i?x?y?0?i1?i

∴lim

不存在.即f(z)在z=0处不可导.

z?0

11.设区域D位于上半平面,D1是D关于x轴的对称区域,若f(z)在区域D内解析,求证

F?z??f?z?在区域D1内解析.

证明:设f(z)=u(x,y)+iv(x,y),由于f(z)在区域D内解析.所以u(x,y),v(x,y)在D内可微且满足C-R方程,即

?u?x??v?y,?u?y???v?x.

f?z??u?x,?y??iv?x,?y????x,y??i??x,y?,得

???x???x??u?x,?y??x

???y??u?x,?y??y???u?x,?y??y

???v?x,?y??x

???y???v?x,?y??y??v?x,?y??y

???y???y???x故φ(x,y),ψ(x,y)在D1内可微且满足C-R条件从而f?z?在D1内解析

13.计算以下各值

(1)e2+i=e2?ei=e2?(cos1+isin1)

2??i2???x?,??

(2)e3?e3?eπ?i3??π??π???e3??cos????isin?????e3?3??3???22?13????22?i??(3)Reex?x?iy2?y2?2

?yx?y22?Ree?xx?y2i?e??2x2x?y?Re?e??x?yy????????cos??2?isin?2??x2?y2????x?y????????ex?y22y???cos?22??x?y?(4)ei?2?x?iy??ei?e?2?x?iy?

?e?2x?e?2iy?e?2x

14.设z沿通过原点的放射线趋于∞点,试探讨f(z)=z+e的极限.解:令z=reiθ,

对于?θ,z→∞时,r→∞.

??故lim?rei??ere??lim?rei??ercos??isin????.

i?z

r??r??所以limf?z???.

z??

15.计算以下各值.

(1)ln??2?3i?=ln13?iarg??2?3i??ln13?i?π?arctan??3??2?(2)ln?3?3i??ln23?iarg?3?3i??ln23?i????π?π??ln23?i6?6

(3)ln(ei)=ln1+iarg(ei)=ln1+i=i

(4)ln?ie??lne?iarg?ie??1?π2i

16.试探讨函数f(z)=|z|+lnz的连续性与可导性.

解:显然g(z)=|z|在复平面上连续,lnz除负实轴及原点外四处连续.设z=x+iy,g(z)?|z|?u?x,y???u?x?v?x22x?y?u?x,y??iv?x,y?

22x?y,v?x,y??0在复平面内可微.

?12?12?x2?y2??2x?xx?y22?u?y?yx?y22

?0?v?y?0

故g(z)=|z|在复平面上四处不可导.

从而f(x)=|z|+lnz在复平面上四处不可导.f(z)在复平面除原点及负实轴外四处连续.

17.计算以下各值.(1)?1?i??e?e?eln21?i?eπ4ln?1?i?1?i?e2i??2???1?i??ln?1?i??e?1?i????ln?2?π4?i?2kπi??

?π4π4i?ln?eπ4?2kπln2??2kπ?πi??ln?4ln2??2kπ??π??cos??ln?4???π??cos??ln?4?5??π2??isin??ln??4??π2??isin??ln??4??2??????2?????2?e2kπ?π4(2)??3??e?e?35?eln??3??e5?ln??3?

5??ln3?i?π?2kπi??e5ln3?5i?π?2kπ5i5?ln3?cos?2k?1?π5?isin?2k?1?π5?5?isin?2k?1?π5???5??cos?2k?1?π??i(3)1?i?eln1?e?iln1?e?i?ln1?i?0?2kπi

?e?i??2kπi??e2kπ1?i?1?i?(4)???2?1?i?e?1?i?ln???2??e?1?i?ln???1?i??2??e?e?π???1?i???ln1?i?????2kπi??4???π4π4π?e?2kππ??1?i???2kπi?i??4?π??i?2kπ???4?2kπi?i?2kπ??e4?e

π?e4π?2kπ?π?π????cos?isin????4?4????22????22?i???e4?2kπ

18.计算以下各值(1)cos?π?5i????e?5ei?π?5i??e2?5?i?π?5i??5e5iπ?5?e2?5?iπ?5

??ch55?e??1?2??e?e2??e?e2i?5(2)sin?1?5i????ei?1?5i??e2i2i?i?1?5i??e?e2i?i?5

5?5e?cos1?isin1??e??cos1?isin1?e?e25?5?sin1?i?e?e25?5cos1i?3?i?e?e?i?3?i?(3)tan?3?i??sin?3?i?cos?3?i??ei?3?i?sin6?isin22i????i3?i22?e2?ch1?sin3?2i

(4)sinz?212i2??e2?y?xi?ey?xi??sinx?chy?icosx?shy2

22?sinx?chy?cosx?shy222222?sinx??chy?shy???cosx?sinx??shy2?sinx?shy22(5)arcsini??iln?i?1?i2???iln?1?2???i?ln?2?1??i2kπ???????????i?ln?2?1??i?π?2kπ??k?0,?1,?

(6)arctan?1?2i???ln2?kπ?i1?i?1?2i?i?21????ln???i?1?i?1?2i?2?55?arctan2?i4?ln5

1219.求解以下方程

(1)sinz=2.

解:z?arcsin2?ln?2i?3i???ln???2?3?i??

i???i?ln?2??1???3???2k??πi??2??3?,k?0,?1,?11????2k??π?iln?2??2?(2)ez?1?3i?0

解:ez?1?3i即z?ln?1?3i??ln2?i1???ln2??2k??πi3??π3?2kπi

(3)lnz?π2i

π解:lnz?π2i即z?e2?i

i(4)z?ln?1?i??0解:z?ln?1?i??ln2?i?

20.若z=x+iy,求证(1)sinz=sinxchy+icosx?shy证明:sinz??e?e2i12i.?eiz?izπ4?2kπi?ln1??2??2k??πi.?4??ei?x?iy??e2i??x?yi??i

?y?xi?ey?xi??sinx?chy?icosx.shy(2)cosz=cosx?chy-isinx?shy证明:cosz????e?e21212iz?iz?12??ei?x?yi??e?i?x?yi??

?e?y?xi?ey?xi??e?y??cosx?isinx??ey.?cosx?isinx??y?y?yy??e?e?.cosx??isinx.??2?e?e2?cosx.chy?isinx.shy(3)|sinz|=sinx+shy证明:sinz?sinz2222

12i?e?y?xi?ey?xi??sinx?chy?icosx?shy

2222?sinxchy?cosx.shy222222?sinx?chy?shy???cosx?sinx?shy

?sinx?shy22(4)|cosz|2=cos2x+sh2y

证明:cosz?cosxchy?isinxshy

cosz2?cosx.chy?sinx.shy222222?cosx?chy?shy???cosx?sinx?.shy2222

?cosx?shy22

21.证明当y→∞时,|sin(x+iy)|和|cos(x+iy)|都趋于无穷大.证明:sinz?

∴sinz?e?y?xi12i?eiz?e?iz??1??e?y?xi?ey?xi?

2i12?e?y?y?xi?ey?xi

y?e≥ey?xi?e

而sinz12?e?y?xi-y

?ey?xi??1?e?y2y

y?e?

当y→+∞时,e-y→0,ey→+∞有|sinz|→∞.当y→-∞时,e→+∞,e→0有|sinz|→∞.

12e?y?xi同理得cos?x?iy???ey?xi≥12?e?y?ey?

所以当y→∞时有|cosz|→∞.

习题三

1.计算积分?(x?y?ix)dz,其中C为从原点到点1+i的直线段.

C2解设直线段的方程为y?x,则z?x?ix.0?x?1

??x?y?ix?dz???x?y?ix?d(x?ix)2201故

C??10ix(1?i)dx?i(1?i)?213x310?i3(1?i)?i?13

2.计算积分?(1?z)dz,其中积分路径C为

C(1)从点0到点1+i的直线段;

(2)沿抛物线y=x2,从点0到点1+i的弧段.

解(1)设z?x?ix.0?x?1

??1?z?dz???10C1?x??ix(d?x)ix?i(2)设z?x?ix2.0?x?1

??1?z?dz?C?10?1?x?ix2?d(x?ix)?22i3

3.计算积分?zdz,其中积分路径C为

C(1)从点-i到点i的直线段;

(2)沿单位圆周|z|=1的左半圆周,从点-i到点i;

(3)沿单位圆周|z|=1的右半圆周,从点-i到点i.

解(1)设z?iy.?1?y?1

?Czdz??1?1ydiy?i?ydy?i

?11(2)设z?ei?.?从

?i?3?2?到

?2

?Czdz??23?21de?i?32?de2i??2i

(3)设z?ei?.?从

?i?3?2到

?2

?Czdz???1de223?2i

6.计算积分??解

C?z?e?sinz?dz,其中C为

zz?a?0.

???zC?e?sinz?dz?z??Czdz???Ce?sinzdz

zz∵e?sinz在z?a所围的区域内解析

z∴??e?sinzdz?0

C从而

???zC?e?sinz?dz?z2?0??Czdz??2?0adaei?

?ai?2ed??0i?故??

C?z?e?sinz?dz?0

z7.计算积分??1z(z?1)2Cdz,其中积分路径C为

12(1)

C1:z?12(2)C212:z?32

(3)C13:z?i?(4)C4:z?i?32

解:(1)在

z?所围的区域内,

z(z?1)112只有一个奇点z?0.

??1z(z?1)2Cdz???C1(1z?12z?i?1?2z?i?)dz?2?i?0?0?2?i

(2)在C2所围的区域内包含三个奇点z?0,z??i.故

??1z(z?1)2Cdz???C2(1z?12z?i?1?12z?i?1)dz?2?i??i??i?0

(3)在C2所围的区域内包含一个奇点z??i,故

??1z(z?1)2Cdz???C3(1z?12z?i?1?12z?i?1)dz?0?0??i???i

(4)在C4所围的区域内包含两个奇点z?0,z?i,故

??

1z(z?1)2Cdz???C4(1z?12z?i?1?12z?i?1)dz?2?i??i??i

10.利用牛顿-莱布尼兹公式计算以下积分.(1)

???2i0zcosdz(2)

210??0?iedz(3)

?z?ii1(2?iz)dz

2(4)

?iln(z?1)z?1??2i01dz(5)

?z?sinzdz(6)

?1?tanzcosz21dz

解(1)?(2)?0??iz1zcosdz?sin222?z0??i??2i0?2ch1

edz??e?z??2

(3)

?i1(2?iz)dz?21i?ii1(2?iz)d(2?iz)?2113?(2?iz)i3i1??113?i3

(4)

?iln(z?1)z?11dz??1ln(z?1)dln(z?1)?12?ln(z?1)12i11?2??(?3ln2)

842(5)

?10z?sinzdz???zdcosz??zcosz0110?0coszdz?sin1?cos1

i1(6)

?i1?tanzcosz21dz??i1seczdz?2?i1secztanzdz?tanz2?12tanz2i111?????tan1?tan21?th21??ith1?22?e2z

11.计算积分??(1)

z?i?1Cz?1dz,其中C为

(2)z?i?1(3)e2zz?2

ezz?i解(1)

??e2Cz?1dz?dz???ezC(z?i)(z?i)ezdz?2?i?zz?i??ei

???e

?iz(2)(3)

??Cz?1??C(z?i)(z?i)dz?2?i?ez?iz??i??e2zCz?1dz???e2zC1z?1dz???e2zC2z?1dz??e??ei?i?2?isin1

16.求以下积分的值,其中积分路径C均为|z|=1.

ezz(1)

??Cdz(2)5??coszz3Cdz(3)

??C2dz,z?102(z?z0)2tanz解(1)

??ezzCdz?52?i4!(e)z(4)z?0??i12

(2)

??coszz3Cdz?2?i2!(cosz)(2)z?0???i

(3)

??C2dz?2?i(tanz)'2(z?z0)tanzz?z0??isec2z02

17.计算积分??(1)中心位于点z1(z?1)(z?1)33Cdz,其中积分路径C为

?1,半径为R?2的正向圆周

?2(2)中心位于点z??1,半径为R的正向圆周

解:(1)∴??(2)

C内包含了奇点z1dz?3?1

1(z?1)(2)z?12?i2!C(z?1)(z?1)3()3?3?i8

C内包含了奇点z1(z?1)(z?1)3??1,2?i2!1(z?1)3?i8∴??

Cdz?3()3(2)z??1??

19.验证以下函数为调和函数.(1)??x?6xy?3xy?2y;(2)??ecosy?1?i(esiny?1).xx3223

解(1)设w?u?i?,u∴?u?x2?x3?6xy?3xy22?2y3??0

2?3x?12xy?3y

2?u?y??6x?6xy?6y

2?u?x22?6x?12y

?u?y22??6x?12y

从而有?u?x22??u?y22?0,w满足拉普拉斯方程,从而是调和函数.

(2)?u?x设w?u?i?,u?ex?cosy?1??ex?siny?1

x∴

?e?cosy

?u?y?u?y22x??e?siny

?u?x22?e?cosy

x??e?cosy

x从而有?u?x???x22??u?yx22?0,u满足拉普拉斯方程,从而是调和函数.

?e?siny

???y2x?e?cosy

???x222?e?siny

x???y2??siny?e

x???x2????y22?0,?满足拉普拉斯方程,从而是调和函数.

20.证明:函数u?x?y,??22xx?y?u?x2222都是调和函数,但f(z)?u?i?不是解析函数

证明:

?u?x?2x

?u?y??2y?2

?u?y22??2

?u?x22??u?y222?0,从而u是调和函数.

22???x???x22?y?x2(x?y)22

???y?(x???y22?2xy2

22?y)233??6xy?2x(x?y)2233?6xy?2x(x?y)22

???x22????y22?0,从而?是调和函数.

但∵

?u?x????y

?u?y?????x

∴不满足C-R方程,从而f(z)?u?i?不是解析函数.

22.由以下各已知调和函数,求解析函数f(z)?u?i?(1)u?x2?y2?xy(2)u?yx?y22,f(1)?0

???x解(1)由于所以

?u?x?2x?y????y

?u?y??2y?x??

????(0,0)??x2(x,y)?u?ydx??u(x,y)x?xdx?y(2x?y)dy?Cdy?C??(2y?x)dx?(2x?y)dy?C??0?0(0,0)?x2?y222?2xy?Cf(z)?x?y?xy?i(?2x22?y22?2xy?C)

令y=0,上式变为f(x)?x?i(2x22?C)

从而f(z)?z?i?2z22?iC

?u?yx?y2222(2)

?u?x??2xy(x?y)222

?(x?y)2

用线积分法,取(x0,y0)为(1,0),有???1x?(x,y)(1,0)(??u?yxdx??u?xdy)?C??xxx21dx?x?42yydy?C0(x2?y2)2?1?x?y22xy?2?1?C20x?y

f(z)?yx?y22?i(xx?y22?1?C)

由f(1)?0.,得C=0?1??f?z??i??1?

?z?

23.设p(z)?(z?a1)(z?a2)?(z?an),其中ai(i?1,2,?,n)各不一致,闭路C不通过

a1,a2,?,an,证明积分

12πi??Cp?(z)p(z)dz

等于位于C内的p(z)的零点的个数.

证明:不妨设闭路C内P(z)的零点的个数为k,其零点分别为a1,a2,...ak

nnk??2πi?11P?(z)P(z)1Cdz???2πi11?(z?ak?2C)?(z?a1)?(z?ak)?...(z?a1)...(z?an?1)k?3(z?a1)(z?a2)...(z?an)1z?a2Cdz??2πiCz?a1dz?12πi??2πi??Cdz?...?1??2πi??C11z?andz1Cdz?1?1?...?1??????k个1z?ak?1dz?...?2πiz?an?k

24.试证明下述定理(无界区域的柯西积分公式):设f(z)在闭路C及其外部区域D内解析,且limf(z)?A??,则

z????f(z)?A,d????A,2πiC??z?1f(?)z?D,z?G.

其中G为C所围内部区域.

证明:在D内任取一点Z,并取充分大的R,作圆CR:则f(z)在以C及f(z)?12πi[??CRz?R,将C与Z包含在内

为边界的区域内解析,依柯西积分公式,有

d?-??f(?)d?]

f(?)CR??zC??z由于

f(??z)??zf(?)在??R上解析,且

???lim????z?limf(?)????11?z?limf(?)?1????所以,当Z在C外部时,有f(z)?A???2πi1f(?)C??zd?

12πi??f(?)C??zd???f(z)?A

设Z在C内,则f(z)=0,即

12πif(?)d??f(?)d?]

0?[??1CR??z??C??z故有:2πi

??f(?)C??zd??A

习题四

????1.复级数?an与?bn都发散,则级数?(an?bn)和?anbn发散.这个命题是否成立?为

n?1n?1n?1n?1什么?

??答.不一定.反例:

??n?1?an??nn?11?i1n2??,?bn?n?1?n?1?1n?i1n2发散

但?(an?bn)?n?1??n?n?1i?2n2收敛

?(an?1?bn)??n?12n发散

???n?1anbn??[?(n?11n2?1n4)]收敛.

2.以下复数项级数是否收敛,是绝对收敛还是条件收敛?

iπ?(1)?n?1?1?i2n?1?nin(2)?(n?1?1?5i2cosin2n?)(3)

n?n?1enn

(4)

?lnn(5)?n?1?

n?nn?0解(1)

??n?11?i2n?1?n??n?1?1?(?1)?in2n?1??n?11n?(?1)n?i

由于?n?11n发散,所以?n?11?in发散

?(2)?n?11?5i2n???n?1n(262)发散1252n又由于lim(n???1?5i2n)?lim(n???i)?0

n所以?(n?11?5i2πi)发散

iπ?(3)

?n?1en?n??n?11n?发散,又由于?n?1enn?cosπn?isinnπn????n?1?n?11n(cosπn?isinπn)收

敛,所以不绝对收敛.

?(4)

?n?1in?lnn??lnn

n?111由于

lnn?1n?1

所以级数不绝对收敛.

?又由于当n=2k时,级数化为?k?1(?1)kln2k收敛

?当n=2k+1时,级数化为?k?1(?1)kln(2k?1)也收敛

所以原级数条件收敛

?(5)

?n?0cosin2n???n?012n?e?e2n?n?1??()?22n?02en1??n?0(12e)

n?其中?()发散,?(n?0e?n12e2)收敛

nn?0所以原级数发散.

??2?23.证明:若Re(an)?0,且?an和?an收敛,则级数?an绝对收敛.

n?1n?1n?12222证明:设an?xn?iyn,an?(xn?iyn)?xn?yn?2xnyni

??由于?an和?an2收敛

n?1n?1???2?所以?xn,?yn,?(xn?yn),?xnyn收敛

n?1n?1n?1n?1又由于Re(an)?0,

xn?limxn?0所以xn?0且limn??n??2当n充分大时,xn?xn

?2所以?xn收敛

n?12an2?xn?yn?2xn?(xn?yn)

?2n22222?22而?2x收敛,?(xn?yn)收敛n?1n?1?所以?ann?12?收敛,从而级数?an绝对收敛.

n?12

?4.探讨级数?(zn?0n?1?z)的敛散性

n

n解由于部分和sn??(zk?0k?1?z)?zkn?1?1,所以,当z?1时,sn??1

当z?1时,sn?0,当z??1时,sn不存在.

i?当z?e而??0时(即z?1,z?1),cosnθ和sinnθ都没有极限,所以也不收敛.

当z>1时,sn??.

?故当z?1和z?1时,

??(zn?0n?1?z)收敛.

n5.幂级数?Cn(z?2)能否在z=0处收敛而在z=3处发散.

n?0n解:设limn??Cn?1Cn??,则当z?2?1?时,级数收敛,z?2?1?时发散.

若在z=0处收敛,则

1?1?2

若在z=3处发散,则

??1

?显然矛盾,所以幂级数?Cn(z?2)不能在z=0处收敛而在z=3处发散

n?0n

6.以下说法是否正确?为什么?

(1)每一个幂级数在它的收敛圆周上四处收敛.

(2)每一个幂级数的和函数在它的收敛圆内可能有奇点.

答:(1)不正确,由于幂级数在它的收敛圆周上可能收敛,也可能发散.(2)不正确,由于收敛的幂级数的和函数在收敛圆周内是解析的.

?n?7.若?Cnz的收敛半径为R,求?n?0n?0Cnbnz的收敛半径。

nCn?1b解:由于limn??n?1Cnbn?limCn?1Cnn???1b?11Rb

所以R??R?b

?n8.证明:若幂级数?anz的系数满足limn??n?0nan??,则

(1)当0?????时,R?(2)当??0时,R???(3)当????时,R?0

?1?

证明:考虑正项级数?anzn?0n?a1z?a2zn2?...?anzn?...

由于limnn??anzn?limnn??an?nz???z,若0?????,由正项级数的根值判别法知,

n当??z?1时,即z?1??时,?anz收敛。当??z?1时,即z?n?01?时,anzn2不能

趋于零,limn??nanzn?1级数发散.故收敛半径R?1?.

当??0时,??z?1,级数收敛且R???.若????

9.求以下级数的收敛半径,并写出收敛圆周。

?n,对?z?0,当充分大时,必有anzn2不能趋于零,级数发散.且R?0

(1)(3)

?n?0(z?i)np?(2)

?2n?12n?nn?0p?zn

??n?0?(?i)n?1?z2n?1

(4)

?(n)n?0in?(z?1)n(n?1)

解:(1)n??(n?1)?R?1lim1p1np?lim(n??nn?1)?lim(1?n??p1n?1)?1p

收敛圆周

z?i?1

lim(n?1)npp(2)

n???1z?1

n?1R?1所以收敛圆周

(3)记fn(z)?(?i)由比值法,有

limfn?1(z)fn(z)?lim?2n?12n?z2n?1

(2n?1)?2?z(2n?1)?22n?1n2n?12n?1n??n???12z2?z

要级数收敛,则

z?2级数绝对收敛,收敛半径为R?2所以收敛圆周

z?2inn(n?1)(4)记fn(z)?()?(z?1)n

n(n?1)limnn??fn(z)?limn(z?1)nn??n?limz?1nn?1n?????,??????若????1若????1

所以

z?1?1时绝对收敛,收敛半径R?1

收敛圆周

z?1?1

10.求以下级数的和函数.

??(1)

?(?1)n?1n?1?nz(2)

n

?(?1)n?0n?z2n(2n)!

解:(1)limCn?1Cn?limn?1n?1n??n??

故收敛半径R=1,由逐项积分性质,有:

??0z??(?1)nznn-1dz??n?1(?1)z?nnz1?z

n?1所以

??n?1(?1)?nznn-1?(z1?z)??1(1?z)2,z?1

于是有:

???n?1(?1)n?1?nz??z?(?1)?nzn?1nnn?1??z(1?z)2z?1

?s(z)?(2)令:

?limCn?1Cn?(?1)n?0n?z2n(2n)!

1n???limn??(2n?1)(2n?2)?0.

故R=∞,由逐项求导性质

?s?(z)??(?1)n?1n?z2n?1(2n?1)!

?s??(z)??(?1)n?1n?z2n?2?(2n?2)!??(?1)m?0m+1?z2m?(2m)!(m?n?1)???(?1)?n?0nz2n(2n)!

由此得到s??(z)??s(z)即有微分方程s??(z)?s(z)?0

故有:s(z)?Acosz?Bsinz,A,B待定。

?由S(0)?A?[?(?1)?n?0nz2n(2n)!?]z?0?1?A?1

s?(0)??sinz?Bcosz?[?(?1)?n?1nz2n?1(2n?1)!]z?0?0?B?0

所以

??(?1)n?0n?z2n(2n)!?cosz.R???

???n11.设级数?Cn收敛,而?Cn发散,证明?Cnz的收敛半径为1

n?0n?0n?0?证明:由于级数?Cn收敛

n?0设

limCn?1ZCnZn?1nn????z.

??Cn?0nz的收敛半径为1

n则z?1?

??1现用反证法证明

limCn?1???1?若

0???1n??Cn则z?1,有

,即?Cn收敛,与条件矛盾。

n?0??n若

??1则z?1,从而?Cnz在单位圆上等于?Cn,是收敛的,这与收敛半径的概念

n?0n?0矛盾。

综上述可知,必有R?1?1??1,所以

?

?12.若?Cn?0nzn在

z0点处发散,证明级数对于所有满足

?z?z0点z都发散.

证明:不妨设当

z1?z0时,?Cn?0znn在

z1?处收敛

?则对

?z?z1,

??Cn?0nzn绝对收敛,则

?Cn?0nzn在

z0处收敛

nz?z0所以矛盾,从而?Cnz在处发散.

n?0

13.用直接法将函数ln(1?e解:由于ln(1?e)?ln(?z?z4)在z?0点处展开为泰勒级数,(到z项),并指出其收敛半径.

1?eezz)

奇点为zk?(2k?1)πi(k?0,?1,...)

所以R?π又

ln(1?e?z)z?0?ln2

[ln(1?e?z)]???e?z?zz?01?e??12122[ln(1?e?z)]????e?z?z(1?e?z)2z?0??

[ln(1?e?z)]?????e?e?z?2z(1?ee?z)3z?0?0

?2z[ln(1?e?z)](4)?(1?4e?z?z?e)4)z?0(1?e??12

3于是,有展开式

ln(1?e?z)?ln2?12z?12!22z?214!23z?...,R?π4

(z?1)4

114.用直接法将函数1?z2在解:又

f(z)?11?z2z?1?2点处展开为泰勒级数,(到

R?2项)

z??i1为1?z2的奇点,所以收敛半径

12

,f(1)?f?(z)??2z(1?z)22,f?(1)??1212

f??(z)??2?6z(1?z)223,f??(1)?f???(z)?24z?24z(1?z)243,f???(1)?0

24f(4)(z)?24?240z?120z(1?z)25,f(4)(1)?0

于是,f(z)在z?1处的泰勒级数为

11?z2?12?12(z?1)?14(z?1)?234!(z?1)?...,R?42

15.用间接法将以下函数展开为泰勒级数,并指出其收敛性.

1(1)2z?3分别在

arctanzz?0和

z?13sinz在z?0处处(2)

(3)在

z?0处(4)(z?1)(z?2)在z?2处

zz?0(5)ln(1?z)在处

1解(1)2z?312z?31??13?2z??13?1?123z??13???(n?023z),z?n32

?2z?2?1??12(z?1)?1??11?2(z?1)????2(z?1),z?1?n?0nn12

(2)

sinz??(2n?1)!zn?0?(?1)n2n?1?z?z33!?z55!?...

sinz?33?4(?1)?n32n?1n?0(2n?1)!1z2n?1,z??

?arctanz?(3)

?z01?z2dz

?z??i为奇点,?R?1z0arctanz??11?zdz?2??0z??(?1)zdz?n2n?n?0(?1)?n12n?1?z2n?1,z?1n?0

(4)

1(z?1)(z?2)1?n?1z?1?1z?21??1z?2?3?1z?2?4?13?1?1z?23?14?1?1z?24??(?1)?3n?0?n?(z?23?)?1n(?1)?4n?0nn?(z?24)n

?n?0(?1)?(13n?14n?1)(z?2),z?2?3(5)由于从z??1沿负实轴ln(1?z)不解析所以,收敛半径为R=1

[ln(1?z)]??11?zz?n???(?1)n?0nn?z

?nln(1?z)???(?1)0n?0?zdz??(?1)n?0n?1n?zn?1,z?1

16.为什么区域z?R内解析且在区间(?R,R)取实数值的函数f(z)展开成z的幂级数时,展开式的系数都是实数?

答:由于当z取实数值时,f(z)与f(x)的泰勒级数展开式是完全一致的,而在x?R内,f(x)的展开式系数都是实数。所以在z?R内,f(z)的幂级数展开式的系数是实数.

17.求

f(z)?2z?12z?z?2的以

z?0为中心的各个圆环域内的罗朗级数.

z?0z?1z2??2解:函数f(z)有奇点1与,有三个以为中心的圆环域,其罗朗级数.分别为:

在z?1内,f(z)?2z?1z?z?22=1z?1?1z?2????z?n?0n1?n(?1)?2n?0zn()2

???n?0((?1)?n12n?1?1)zn

119.在解:令

1?z???1?z内将f(z)?e展开成罗朗级数.

t?,1?z则

1f(z)?e?1?t?t12!?t?213!?t?...3

t?1?z???内展开式为在1?z111?z??1z?11?1z??1z?(1?1z?1z2?...)

所以,代入可得

f(z)?1??1?1z?1z12z2?(1??1z3??1z2?...)?1?112!z195?(1??...1z?1z2?...)?...216z

24z4120z

20.有人做以下运算,并根据运算做出如下结果z1?zzz?1?z?z?z?...23

?1?1z?1z2?...

z由于1?z1z3?zz?11z?0,所以有结果

...??1z2??1?1?z?z?z?...?023

你认为正确吗?为什么?

z答:不正确,由于1?zz1z1z2?z?z?z?...23要求z?1

而1?z?1???...要求z?1

zz?11z6z所以,在不同区域内1?z

??

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论