知道网课《高等工程数学 I(南京理工大学)》课后章节测试答案_第1页
知道网课《高等工程数学 I(南京理工大学)》课后章节测试答案_第2页
知道网课《高等工程数学 I(南京理工大学)》课后章节测试答案_第3页
知道网课《高等工程数学 I(南京理工大学)》课后章节测试答案_第4页
知道网课《高等工程数学 I(南京理工大学)》课后章节测试答案_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

DD1有限维线性空间上范数1,范数2之间的关系是A.2强于1CB.C1强于2CC.C无法比较.C.D2赋范线性空间成为Banach空间,需要范数足?C不变性C可加性C完备性非负性A.AB.BC.CD.DC3【判断题】(2分)标准正交系是一个完全正交系的充要条件是满足Parseval等式C错C对A.B.BB4在内积空间中,可以从一组线性无关向量得到一列标准正交系C对C错.B.BA5矩阵的F范数不满足西不变性C对C.B.B错矩阵2范数DDB6与任何向量范数相容的矩阵范数是?A.极大列范数CC.极大行范数C7正规矩阵的谱半径与矩阵何种范数一致A.CA.算子范数CC..C.DD8矩阵收敛,则该矩阵的谱半径C大于1CC等于1B.BC.CD.DC9矩阵幂级数收敛,则该矩阵的谱半径CC.CCD.D2BDBDD正规矩阵的条件数等于其最大特征值与最小特征值的商A.对CB.C错A11矩阵不变因子的个数等于()CA.C矩阵的秩.C.矩阵的行数CC.矩阵的列数.C.行数和列数的最小值ADABCDABCCA.C矩阵的秩CB.行列式因子的个数CC.C不变因子的个数.0.初等因子的个数D3.C.初等因子的次数.C.行列式因子的个数.C.初等因子的零点CD.不变因子的个数C4.A的n阶行列式因子.A的n个不变因子的乘积C.CA的次数最高的初等因子.A的行列式因子的乘积5.主特征值有两个,是一对相反的实数.主特征值是实r重的C.C主特征值只有一个.主特征值有两个,是一对共轭的复特征值6.A的n个列盖尔圆构成的并集中.A的n个行盖尔圆构成的并集中C.都不对.A的n个行盖尔圆构成的并集与n个列盖尔圆构成的并集的交集中7C对C错.B.BA8C错0对.B.BAAAA9CA.C对CB.C错BBC对C错A.AB.BBB1.C.对C错B.BB20秩CCC.B.BC.C.A3矩阵的满秩分解不唯一.C对C.B.B错A4【判断题】(2分)酉等价矩阵有相同的奇异值.CA.对CB.C错A5求矩阵A的加号逆的方法有()A.奇异值分解B.满秩分解C.矩阵迭代法D.6【判断题】(2分)若A为可逆方阵,则9C错C对.B.BB7用AC错A.B.BA8C错C对.B.BBC.CAA.C.对B.错A〇错C对.B.BA1()是利用Gauss消去法求解线性方程组的条件.A.都不对.系数矩阵的顺序主子式均不为0D.系数矩阵满秩参考答案参考答案2.若系数矩阵A对称正定,则GS迭代法收敛.都不对C.C若迭代矩阵谱半径不大于1,则迭代收敛.J法和GS法的敛散性无相关性参考答案参考答案3CA.最速下降法CB.BC.共轭梯度法(D.法参考答案参考答案C4CA.C.相邻两步的搜索方向正交CC.CC.相邻两步的残量正交参考答案参考答案A5A.共轭梯度法B.B三角分解解法C.CABC都对.最速下降法参考答案参考答案6A.SOR法收敛B.CC.C可用Cholesky法求解线性方程组D.都不对参考答案参考答案C7〇对C错.B.B参考答案参考答案B8C错C对.B.B参考答案参考答案B9CA.C错对参考答案参考答案BC对C.B.B错3参考答案参考答案B第五章测试1C对C错.B.BA2CA.A构造一对称正定矩阵来取代当前海塞阵,并一该矩阵的逆乘以当前梯度的负值作为方向CB.CCC.CD.ACD.CD.CA.FR公式B.BC.CA4内点罚函数法中常用的障碍函数有A.三种都可以B.C.对数障碍函数.倒数障碍函数5CA.C对CB.C错A6C2C1C0C3.B.BC.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论