版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
风电功率的预测一、风电功率预测风速、风向、气温、气压等的SCADA物、粗糙度等数据,数值天气预报数据,把上面的某些数据通过一定的方法转换到风电机组轮毂高度的风速、风向,然后根据功率曲线得到风电场的出力,并根据风电场的效率进行修正。二、预测的意义风电功率预测的意义如下:①用于经济调度,根据风电场预测的出力曲线优化常规机组的出力,达到降低运行成本的目的。②根据风电出力变化规律增强系统的安全性、可靠性和可控性。③在风电参与电力市场的系统中,优化电力市场中电力的价值。在电力市场中,风电场对风电功率进行预测,参与电力市场竞价;电网公司对风电功率进行预测,保证系统安全经济运行。①优化电网调度,减少旋转备用容量,节约燃料,保证电网经济运行对风电场出力进行短期预报,将使电力调度部门能够提前为风电出力变化及时调整调度计划;从而减少系统的备用容量、降低电力系统运行成本。这是减轻风电对电网造成不利影响、提高系统中风电装机比例的一种有效途径。力进行预报,将在很大程度上提高风力发电的市场竞争力。三、预测方法的分类风功率预测方法可以分为2类:一种方法是根据数值天气预报的数据,用物理方法计算风电场的输出功率;另一种方法是根据数值天气预报与风电场功率输出的关系、在线实测的数据进行预测的统计方法。考虑了地形、粗糙度等信息,采用物理方程进行预测的方法则称之为物理方法,根据历史数据进行统计分析,找出其内在规律并用于预测的方法称之为统计方法(如神经网络方法、模糊逻辑方法等)。如果物理方法和统计方法都采用则称之为综合方法。风电功率预测方法根据预测的物理量来分类,可以分为21电场功率输出;第2根据所采用的数学模型不同可分为持续预测法、自回归滑动平(autoregressivemoving1不稳定。改进的方法有ARMA法或时间序列法和卡尔曼滤波算法相结合。另外还有一些智能方法,如人工神经网络方法等。根据预测系统输入数据来分类也可以分为2类:1类不采用数值天气预报的数据,1类采用数值天气预报的数据。根据预测的时间尺度来分类,可分为超短期预测和短期预测。所谓的超短期并没有一致的标准,一般可认为不超过30min30min~72h1数据。四、预测方法的优缺点及适应范围风速的预测方法在进行中期以上的功率预测时,基于风速的预测方法就是前面介绍的“物理方法”。在进行短期预测时,基于风速的预测方法主要分两步来完成:首先利用风速模型预测出风力发电机风轮轮毂高度的风速、风向,并且计算出风速与风轮扫过平面正交的风速分量;然后利用风力发电机的功率曲线计算出发电机的实际输出功率。这里的风速模型采用统计方法或者学习方法来建立,输入量通常是历史风速序列和实时采集的风速。持续预测法是此领域的最简单的方法,认为风速预测值等于最近几个风速历史值的滑动平均值。通常,只是简单地把最近一点的风速观测值作为下一点的风速预测值。该模型的预测误差较大,且预测结果不稳定。卡尔曼滤波法把风速作为状态变量建立状态空间模型,用卡尔曼滤波算法实现风速预测。这种算法在假定噪声的统计特性已知的此算法适用于在线风速预测。随机时间序列法随机时间序列法利用大量的历史数据来建模,经过模型识别、参数估计、模型检验来确定一个能够描述所研究时间序列的数学模型,进而推导出预测模型达到预报的目的。目前,该方法只需知道风电场的单一风速或功率时间序列即可建立模型预测,并且可以达到较好的预测效果。该方法使用最多的是累积式自回归一滑动平均模型。时间序列和卡尔曼滤波混合算法,时间序列分析建模最大的优点在于不必深究信号序列的产生背景,序列本身所具有的时序性和自相关性已经为建模提供了足够的信息,只需要有限的样本序列,就可以建立起相当高精度的预测模型,但其存在低阶模型预测精度低、高阶模型参数估计难度大的不足。而卡尔曼滤波预测法存在动态修改预测权值的优点,依靠预测递推方程可以获得较高的精度,但同样存在建立卡尔曼状态方程和测量方程较困难的不足。首先利用时间序列分析建立一个能反映序列信号变化规律的低阶模型,从(ANN由大量简单处理元件以某种拓扑结构大规模连接而成,是一门涉及生物、电子、计算机等多个领域的科学。人工神经网络具有并行处理、分布式存储与容错性等特征,具有自学习、自组织和自适应能力,可以实现联想记忆、非线性映射、分类与识别、优化计算、知识处理等功能,对复杂问题的求解十分有效,可用于短期风速预测。时序神经网络预测方法:原始数据是风速时间序列和风电机组输出功率的时间序列。用时间序列法和神经网络法进行建模,主要权值调整手段,解决了神经网络权值随时间推移而逐渐变得不适用的问题。时序神经网络法有效地提高了风速预测精度。模糊逻辑法应用模糊逻辑和预报人员的专业知识将数据和语言形成模糊规则库,然后选用一个线性模型逼近非线性动态变化的风速。但是,单纯的模糊方法对于风速预测,效果往往不佳,这主要是因为模糊预测学习能力较弱,模糊系统的辨识还未形成完善的理论,在预测系统中选择模糊系统的结构尚需作进一步的研究。通常模糊预测法要与其他方法配合使用,例如将模糊与遗传算法相结合进行短期风速预测。空间相关性法该方法需要考虑风电场以及与之相近几个地点的多组风速数据,运用几个地点风速之间的空间相关性,进行风速预测。为了获得所需的几组风速数据,需要在风电场周边地区设置几个远程测速站。风电场本地以及各个远程测速站测得的实时风速数据经中心计算机处理,利用风电场与各个测速站处风速之间的空间相关性,对风电场的风速进行预测。实际上,若能收集到风电场以及与之相近的几个地点的多组风速数据,则可利用该方法进行风速预测。该方法对原始数据收集量很大,但由于预测过程中考虑的因素增多,所以预测效果较好。目前,该方法的使用尚在完善中。风电场功率的预测方法基于功率的预测方法就是不考虑风速的变化过程,利用统计方法或学习方法,根据历史功率序列建立模型并利用实时数据对发电量进行短期预测,或者根据历史数据找出天气和输出功率间的关系并利用实时数据和NWP这种方法的输入信号仅仅需要大型风电场中的每个风力发电机的电压和电流数据。把每个风力发电机都看作一个“数据采集装置”这样整个风电场发电功率预测模型所输入的时间序列数据包含的信息更全面、更准确。这种预测方法既可以降低数据采集的成本,又可以提高数据采集的质量,增加预测准确度。而且在现代化的大型风电场中都会建立风力发电机的远程监控系统,在这个系统中会对所有风力发电机的所有信号进行采集和记录,因此,可以直接将其中风力发电机输出功率的实时数据用来进行风电场的发电功率预测,不需要增加额外的成本。物理模型主要考虑的是一些物理量,比如数值天气预报得到的(MOS)减小存在的误差,最后根据风电场的功率曲线计算得到风电场的输出功率。由于天气预报每天只更新几次,因此这种模型通常适用于相对较长期的预测,比如提前6和温度条件下,即使风速相同,风电场输出功率也不相等,因此风电场功率曲线是一族曲线,同时还应考虑风电机组故障和检修的情况。对整个区域进行风电功率预测时,可采用如下方法:一种方法是对所有的风电场输出功率进行预测,然后求和得到风电功率;另一种方法是只对几个风电场进行预测,然后用一种扩展算法得到整个区域的风电场输出功率。统计学模型可以不考虑风速变化的物理过程,而根据历史统计数据找出天气状况与风电场出力的关系,然后根据实测数据和数值天气预报数据对风电场数据功率进行预测。不引人数值天气预报(NWP)的统计学模型对于提前3-4(artificialneural、混(mixtureofexperts(nearestneighbour(particleswarm(supportvector等。五、新的预测方法1.基于小波变换的风速时间序列分析小波变换原理及规律,并针对小波变换的Mallat算法及其应用有效工具。由小波分析理论可知,原始信号通过小波变换分解到不同的频率通道上,分解后信号在频率成分上比原始信号单一。因此对非平稳时间序列进行小波分解后,就可以利用最小二乘支持向量机等预测方法进行预测。本章基于机器学习和统计学习理论的支持向量机原理,详细探讨了支持向量.机的改进算法一最小二乘支持向量机。最小二乘支持向量机通过解一组线性方程组取代标准支持向量中二次规划优化,提高了收敛速度,比标准支持向量机具用更小的计算复杂性。通过具体的仿真实例可以看出,用最小二乘支持向量机来解决非平稳风速时间序列模式识别问题和预测问题,其辨识和预测效果很好,这说明LS一SVM3.基于小波分解和最小二乘支持向量机的短期风速预测基于统计学习理论的最小二乘支持向量机和具有“数字显微镜”之向性非平稳风速时间序列固有的确定性、非线性和波动性,采用小波变换分离出非平稳风速时间序列中的非线性低频趋势成分和高频波动成分,然后利用能把输入向量映射到一个高维特征空间中实现数据线性可分来提取信息的最小二乘支持向量机,实现对均值具有非平稳特性的风速时间序列的精确预测。对历史年份的小时平均风速数据以季度为单位进行小波分解,采用递推最小二乘法建立各分量的二元线性回归预测模型,将各分量预测模型等权求和集成为次年度对应季度的预测模型。对实测数据的(meanabsolute12.25%,提高了此类预测的精度。考虑具体风力发电机组的功率特性、机组效率和设备运行情况,可得次年度风电场输出功率值。5.基于SVM的风速风功率预测模型对常用风速预测方法进行简述,运用支持向量机回归算法,在风速预测中,对时间序列数据预测模型的建立进行了研究,并在Matlab3种核函数进行了仿真试验。试验结果表明,支持向基于非参数回归模型的短期风电功率预测将非参数回归技术用于短期风电功率预测,建立了短期风电功率并采用内蒙古某风电场的NWP数据和风电功率实测数据验证了所建立的非参数回归模型在短期风电功,采用非参数回归模型和经验分布函数得到的风电功率预测区间可以描,NWP精度是影响短期风电功率预测精度的主要因素。采用统计方法对NWP高针对风电场的NWP精度对于提高短期风电功率预测精度有重要意义。基于模式识别的风电场风速和发电功率预测只需知道风电场的单一风速时间序列即可,简单可行;考虑到风速数据的高度非线性,采用智能方法ANFI适合于风电企业运用。所以本文提出了基于模式识别的风速ANFIS预测模型。些特征相似、适于进行预测的风速样本,作为自适应模糊神经网络的输入,由于筛选出的这些样本相似度高,所以对风速的预测精度有很大的帮助,进而可以较准确的预测发电功率,有利于电力部门做电力交易计划,保证电力系统的运行稳定。应用美国夏威夷Maui岛的数据对上述方法进行验证,其预该方法利用小波函数将原始波形进行不同尺度的分解,将分解得到的周期分量用时间序列进行预测,其余部分采用神经网络进行预测,最后将信号序列进行重构得到完整的风速预测结果。在神经–网络学习过程中加入了微分进化算法,提高了其收敛速度,解决了局部最小化问题。通过实例分析证明了该算法能较为准确地预测风速。9.基于支持向量机的风速与风功率预测方法研究大容量的风力发对电力系统的安全、稳定运行带来严峻挑战。对风速风从物理和统计方法对SVM(支持向量机)预测方法作了分析,支持向量机在风速风功率预测中有非常大的应用空间,并进行了预测实验。随着风电装机容量的快速增长,急需提高风电功率预测的精度。尤其对于那些海上大型风电场来说,由于装机容量都集中在一个小区域内,更需要准确的预测功率。近年来,国内外学者在这方面做了大量研究,提出了很多改进办法,使预测精度不断提高,并且会一直提高下去。具体改进方法如下把多个数字天气预报模型组合起来,对气象信息进测精度。利用遥感技术和高性能计算机技术,可以改善NWP模型的分率,也将有利于风电预测模型输入数据的改善。并改善预测模型,选取合适的线性或非线性方式对多种预测方法的预测结果进行组合优化,这些都会使预测误差进一步减小。需要提进行非线性组合预测,不仅最优组合了多种单一模型所包含的信息,而且可以同时考虑不同模型各自的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/PAS 8235:2024 EN Road vehicles - Ergonomic aspects of human vehicle interactions - Taxonomy for the classification of adaptive interactive vehicle systems
- 年度智能安防系统设计与施工合同04
- 2024年度工程建设项目钢筋采购合同2篇
- 员工住宿免责的协议书
- 锅炉合同范本范本完整版 2篇
- 装修包工包料简易合同
- 二零二四年度保险代理居间协议3篇
- 2024版建筑工程给排水劳务分包合同3篇
- 二零二四年度文化艺术公司艺术品买卖合同2篇
- 《输血管理制度》课件
- 《成本管理培训》课件
- 少先队活动课《民族团结一家亲-同心共筑中国梦》课件
- 法人代表代持股份协议书(2篇)
- 国家开放大学《Web开发基础》形考任务实验1-5参考答案
- 水利安全生产风险防控“六项机制”右江模式经验分享
- 2023-2024学年教科版三年级上学期科学期中检测试卷(含答案)
- 钻井作业指导书
- 供应链管理:高成本、高库存、重资产的解决方案 第2版
- CRPS电源设计向导 CRPS Design Guide r-2017
- 2023年上海国际集团有限公司校园招聘笔试题库及答案解析
- Agency Costs of Free Cash Flow,Corporate Finance,Takeovers
评论
0/150
提交评论