版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数题型归纳请同学们高度重视:首先,关于二次函数的不等式恒成立的主要解法:1、分离变量;2变更主元;3根分布;4判别式法5、二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立;1、此类问题提倡按以下三个步骤进行解决:第一步:令得到两个根;第二步:画两图或列表;第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题,2、常见处理方法有三种:第一种:分离变量求最值用分离变量时要特别注意是否需分类讨论(>0,=0,<0)第二种:变更主元(即关于某字母的一次函数)(已知谁的范围就把谁作为主元);例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,(1)若在区间上为“凸函数”,求m的取值范围;(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.解:由函数得(1)在区间上为“凸函数”,则在区间[0,3]上恒成立解法一:从二次函数的区间最值入手:等价于解法二:分离变量法:∵当时,恒成立,当时,恒成立等价于的最大值()恒成立,而()是增函数,则(2)∵当时在区间上都为“凸函数”则等价于当时恒成立解法三:变更主元法再等价于在恒成立(视为关于m的一次函数最值问题)-22-22例2:设函数(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)若对任意的不等式恒成立,求a的取值范围.(二次函数区间最值的例子)解:(Ⅰ)3aa3aaa3aa3a令得的单调递增区间为(a,3a)令得的单调递减区间为(-,a)和(3a,+) ∴当x=a时,极小值=当x=3a时,极大值=b. (Ⅱ)由||≤a,得:对任意的恒成立①则等价于这个二次函数的对称轴(放缩法)即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。上是增函数. (9分)∴于是,对任意,不等式①恒成立,等价于又∴点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:恒成立恒成立;从而转化为第一、二种题型例3;已知函数图象上一点处的切线斜率为,(Ⅰ)求的值;(Ⅱ)当时,求的值域;(Ⅲ)当时,不等式恒成立,求实数t的取值范围。解:(Ⅰ)∴,解得(Ⅱ)由(Ⅰ)知,在上单调递增,在上单调递减,在上单调递增又∴的值域是(Ⅲ)令思路1:要使恒成立,只需,即分离变量思路2:二次函数区间最值二、题型一:已知函数在某个区间上的单调性求参数的范围解法1:转化为在给定区间上恒成立,回归基础题型解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集例4:已知,函数.(Ⅰ)如果函数是偶函数,求的极大值和极小值;(Ⅱ)如果函数是上的单调函数,求的取值范围.解:.(Ⅰ)∵是偶函数,∴.此时,,令,解得:.列表如下:(-∞,-2)-2(-2,2)2(2,+∞)+0-0+递增极大值递减极小值递增可知:的极大值为,的极小值为.(Ⅱ)∵函数是上的单调函数,∴,在给定区间R上恒成立判别式法则解得:.综上,的取值范围是.例5、已知函数(I)求的单调区间;(II)若在[0,1]上单调递增,求a的取值范围。子集思想(I)1、当且仅当时取“=”号,单调递增。2、a-1-1单调增区间:a-1-1单调减区间:(II)当则是上述增区间的子集:1、时,单调递增符合题意2、,综上,a的取值范围是[0,1]。三、题型二:根的个数问题题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题解题步骤第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;第三步:解不等式(组)即可;例6、已知函数,,且在区间上为增函数.求实数的取值范围;若函数与的图象有三个不同的交点,求实数的取值范围.解:(1)由题意∵在区间上为增函数,∴在区间上恒成立(分离变量法)即恒成立,又,∴,故∴的取值范围为(2)设,令得或由(1)知,①当时,,在R上递增,显然不合题意…②当时,,随的变化情况如下表:—↗极大值↘极小值↗由于,欲使与的图象有三个不同的交点,即方程有三个不同的实根,故需,即∴,解得综上,所求的取值范围为根的个数知道,部分根可求或已知。例7、已知函数(1)若是的极值点且的图像过原点,求的极值;(2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。高1考1资1源2网解:(1)∵的图像过原点,则,又∵是的极值点,则-1-1(2)设函数的图像与函数的图像恒存在含的三个不同交点,等价于有含的三个根,即:整理得:即:恒有含的三个不等实根(计算难点来了:)有含的根,则必可分解为,故用添项配凑法因式分解,十字相乘法分解:恒有含的三个不等实根等价于有两个不等于-1的不等实根。题2:切线的条数问题====以切点为未知数的方程的根的个数例7、已知函数在点处取得极小值-4,使其导数的的取值范围为,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取值范围.(1)由题意得:∴在上;在上;在上因此在处取得极小值∴①,②,③由①②③联立得:,∴ (2)设切点Q,过令,求得:,方程有三个根。需:故:;因此所求实数的范围为:题3:已知在给定区间上的极值点个数则有导函数=0的根的个数解法:根分布或判别式法例8、解:函数的定义域为(Ⅰ)当m=4时,f(x)=eq\f(1,3)x3-eq\f(7,2)x2+10x,=x2-7x+10,令,解得或.令,解得可知函数f(x)的单调递增区间为和(5,+∞),单调递减区间为.(Ⅱ)=x2-(m+3)x+m+6,要使函数y=f(x)在(1,+∞)有两个极值点,=x2-(m+3)x+m+6=0的根在(1,+∞)1根分布问题:1则,解得m>3例9、已知函数,(1)求的单调区间;(2)令=x4+f(x)(x∈R)有且仅有3个极值点,求a的取值范围.解:(1)当时,令解得,令解得,所以的递增区间为,递减区间为.当时,同理可得的递增区间为,递减区间为.(2)有且仅有3个极值点=0有3个根,则或,方程有两个非零实根,所以或而当或时可证函数有且仅有3个极值点其它例题:1、(最值问题与主元变更法的例子).已知定义在上的函数在区间上的最大值是5,最小值是-11.(Ⅰ)求函数的解析式;(Ⅱ)若时,恒成立,求实数的取值范围.解:(Ⅰ)令=0,得因为,所以可得下表:0+0-↗极大↘因此必为最大值,∴因此,,即,∴,∴(Ⅱ)∵,∴等价于,令,则问题就是在上恒成立时,求实数的取值范围,为此只需,即,解得,所以所求实数的取值范围是[0,1].2、(根分布与线性规划例子)(1)已知函数(Ⅰ)若函数在时有极值且在函数图象上的点处的切线与直线平行,求的解析式;(Ⅱ)当在取得极大值且在取得极小值时,设点所在平面区域为S,经过原点的直线L将S分为面积比为1:3的两部分,求直线L的方程.解:(Ⅰ).由,函数在时有极值,∴∵∴又∵在处的切线与直线平行,∴故∴…….7分(Ⅱ)解法一:由及在取得极大值且在取得极小值,∴即令,则∴∴故点所在平面区域S为如图△ABC,易得,,,,,同时DE为△ABC的中位线,∴所求一条直线L的方程为:另一种情况设不垂直于x轴的直线L也将S分为面积比为1:3的两部分,设直线L方程为,它与AC,BC分别交于F、G,则,由得点F的横坐标为:由得点G的横坐标为:∴即解得:或(舍去)故这时直线方程为:综上,所求直线方程为:或.…………….………….12分(Ⅱ)解法二:由及在取得极大值且在取得极小值,∴即令,则∴∴故点所在平面区域S为如图△ABC,易得,,,,,同时DE为△ABC的中位线,∴所求一条直线L的方程为:另一种情况由于直线BO方程为:,设直线BO与AC交于H,由得直线L与AC交点为:∵,,∴所求直线方程为:或3、(根的个数问题)已知函数的图象如图所示。 (Ⅰ)求的值;(Ⅱ)若函数的图象在点处的切线方程为,求函数f(x)的解析式;(Ⅲ)若方程有三个不同的根,求实数a的取值范围。解:由题知:(Ⅰ)由图可知 函数f(x)的图像过点(0,3),且=0 得(Ⅱ)依题意 =–3且f(2)=5 解得a=1,b=–6 所以f(x)=x3–6x2+9x+3 (Ⅲ)依题意 f(x)=ax3+bx2–(3a+2b)x+3(a>0) =3ax2+2bx–3a–2b 由=0b=–9a ① 若方程f(x)=8a有三个不同的根,当且仅当 满足f(5)<8a<f(1)② 由①② 得–25a+3<8a<7a+3<a<3 所以当<a<3时,方程f(x)=8a有三个不同的根。…………12分4、(根的个数问题)已知函数(1)若函数在处取得极值,且,求的值及的单调区间;(2)若,讨论曲线与的交点个数.解:(1)………………………2分令得令得∴的单调递增区间为,,单调递减区间为…………5分(2)由题得即令……6分令得或……………7分当即时-此时,,,有一个交点;…………9分当即时,+—,∴当即时,有一个交点;当即时,有两个交点;当时,,有一个交点.………13分综上可知,当或时,有一个交点;当时,有两个交点.…………………14分
论大学生写作能力写作能力是对自己所积累的信息进行选择、提取、加工、改造并将之形成为书面文字的能力。积累是写作的基础,积累越厚实,写作就越有基础,文章就能根深叶茂开奇葩。没有积累,胸无点墨,怎么也不会写出作文来的。写作能力是每个大学生必须具备的能力。从目前高校整体情况上看,大学生的写作能力较为欠缺。一、大学生应用文写作能力的定义那么,大学生的写作能力究竟是指什么呢?叶圣陶先生曾经说过,“大学毕业生不一定能写小说诗歌,但是一定要写工作和生活中实用的文章,而且非写得既通顺又扎实不可。”对于大学生的写作能力应包含什么,可能有多种理解,但从叶圣陶先生的谈话中,我认为:大学生写作能力应包括应用写作能力和文学写作能力,而前者是必须的,后者是“不一定”要具备,能具备则更好。众所周知,对于大学生来说,是要写毕业论文的,我认为写作论文的能力可以包含在应用写作能力之中。大学生写作能力的体现,也往往是在撰写毕业论文中集中体现出来的。本科毕业论文无论是对于学生个人还是对于院系和学校来说,都是十分重要的。如何提高本科毕业论文的质量和水平,就成为教育行政部门和高校都很重视的一个重要课题。如何提高大学生的写作能力的问题必须得到社会的广泛关注,并且提出对策去实施解决。二、造成大学生应用文写作困境的原因:(一)大学写作课开设结构不合理。就目前中国多数高校的学科设置来看,除了中文专业会系统开设写作的系列课程外,其他专业的学生都只开设了普及性的《大学语文》课。学生写作能力的提高是一项艰巨复杂的任务,而我们的课程设置仅把这一任务交给了大学语文教师,可大学语文教师既要在有限课时时间内普及相关经典名著知识,又要适度提高学生的鉴赏能力,且要教会学生写作规律并提高写作能力,任务之重实难完成。(二)对实用写作的普遍性不重视。“大学语文”教育已经被严重地“边缘化”。目前对中国语文的态度淡漠,而是呈现出全民学英语的大好势头。中小学如此,大学更是如此。对我们的母语中国语文,在大学反而被漠视,没有相关的课程的设置,没有系统的学习实践训练。这其实是国人的一种偏见。应用写作有它自身的规律和方法。一个人学问很大,会写小说、诗歌、戏剧等,但如果不晓得应用文写作的特点和方法,他就写不好应用文。(三)部分大学生学习态度不端正。很多非中文专业的大学生对写作的学习和训练都只是集中在《大学语文》这一门课上,大部分学生只愿意被动地接受大学语文老师所讲授的文学经典故事,而对于需要学生动手动脑去写的作文,却是尽可能应付差事,这样势必不能让大学生的写作水平有所提高。(四)教师的实践性教学不强。学生写作能力的提高是一项艰巨复杂的任务,但在教学中有不少教师过多注重理论知识,实践性教学环节却往往被忽视。理论讲了一大堆,但是实践却几乎没有,训练也少得可怜。阅读与写作都需要很强的实践操作,学习理论固然必不可少,但是阅读方法和写作技巧的掌握才是最重要的。由于以上的原因,我们的大学生的写作水平着实令人堪忧,那么如何走出这一困境,笔者提出一些建议,希望能对大学生写作水平的提高有所帮助。三、提高大学生应用写作能力的对策(一)把《应用写作》课设置为大学生的必修课。在中国的每一所大学,《应用写作》应该成为大学生的必修课。因为在这个被某些人形容为实用主义、功利主义甚嚣尘上的时代,也是个人生存竞争最激烈的时代,人们比任何时代都更需要学会写作实用性的文章,比如职场竞争中的求职信,生活中的财经文书、法律文书等,以提高个人的生存竞争能力。(二)端正大学生的学习态度。首先,要让大学生充分认识到实用写作课的重要性,这门课关乎到他人生的每一个方面,诸如就职,求爱,理财,人际交往等,是他终生都需要使用的一些基础性的知识,也是他必备的一项生存技能。其次,实用写作有它自身的规律和方法。它不是你想怎样写都行的,它有严格的格式性的要求,所以需要系统的研究学习。最后,实用写作课的实践性非常强,所以学生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年绿色生态建筑农民工劳动合同示范3篇
- 二零二五年度防盗门行业市场分析报告合同2篇
- 二零二五版加油站智能监控与数据分析合同3篇
- 二零二五白云区观白活力中心房地产合作开发投资框架合同2篇
- 二零二五年度智能家电产品研发与销售合同3篇
- 二零二五版养殖企业与个体养牛户合作合同3篇
- 二零二五版数据中心机房租赁及数据备份服务合同2篇
- 基于2025年度5G网络技术研发合作合同2篇
- 二零二五版拌和站产品质量追溯与售后服务合同2篇
- 二零二五版建筑工程土方中介合同纠纷调解机制3篇
- 物业费收取协议书模板
- 电工(中级工)理论知识练习题(附参考答案)
- 工业设计概论试题
- 2024-2030年中国商务服务行业市场现状调查及投资前景研判报告
- 起重机的维护保养要求与月度、年度检查记录表
- 消防设施维护保养记录表
- 城区生活垃圾填埋场封场项目 投标方案(技术方案)
- 垃圾分类巡检督导方案
- 大一护理生涯发展展示
- 五年级上册数学应用题100题及答案
- 新生儿急救与复苏培训
评论
0/150
提交评论