版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形内角和定理说课稿《三角形内角和定理》说课稿吴燕各位老师,上午好!今天我说课的课题是九年义务教育北师大版八年级数学上册第七章第五节《三角形内角和定理》第一课时,下面我将从教材分析、学情分析、教学目标、教学重难点、教法学法、教学设计六个方面与大家分享我的说课:首先,教材分析本节课的主要内容是三角形内角和定理的证明与应用,三角形的内角和定理是计算角的度数的重要依据,本课时的内容不仅是对平行线、平角、三角形相关知识的应用和深化,也是后续学习多边形内角和和外角和的基础。其次,学情分析八年级学生已经知道了三角形的内角和为180度,并且经历本章平行线性质与判定定理的学习,他们具备了一定的逻辑推理能力和证明意识,但他们还不了解三角形的内角和定理是如何得来的,因此需要在教师的引导下,进行证明,并加以应用,解决实际问题。根据教材的地位和作用,以及对学情的分析,我确立了如下教学目标:一、理解三角形内角和定理的证明方法与思路,能运用三角形内角和定理解决实际问题。二、经历添加辅助线,利用平行线的性质证明三角形内角和定理明题,让学生进行求证,鼓励学生多角度思考问题,可以分组进行交流讨论,尝试写出证明步骤,然后师生之间,学生之间共同分析证明思路和方法:如果把三角形的三个内角转化为一个平角或一组同旁内角,那么它们的和就会等于180度,问题的关键就在于如何进行转化,引导学生添加辅助线,过三角形的一个顶点作它的对边的平行线,构造出一个平角或一组同旁内角,然后运用平行线的性质和等量代换证明得出三角形的内角和定理,特别要注意为学生分析利用添加辅助线解几何证明题的方法,最后利用多媒体课件演示证明过程,让学生纠正自己的错误,严格规范证明步骤。完成证明之后,让学生看书本第179页的“想一想”,猜想小明的想法是否可行,如果可以,如何证明?同时思考是否还有其他的方法证明三角形的内角和定理?进一步训练推理证明能力。为了提高学生应用数学知识解决实际问题的能力,活学活用,可利用书本第179页的例题,为学生分析,具体如何运用定理求角的度数,用多媒体课件演示解题的方法和过程。活动三、巩固新知为了检查巩固所学知识,可以让学生解决书本第179页的随堂练习,3个题目都是几何证明题,让学生独立思考,完成练习,选3名学生代表到黑板上板书证明过程,并对其他学生的练习加以巡查和指导,随时帮助有学习困难的学生,最后再为他们分析证明思路和方法,对学生代表的板书加以订正,提出他们的优点和缺点,促使学生努力提高,不断进步。活动四、总结提高转入课堂总结阶段,我会让学生畅所欲言,谈谈自己的收获和困惑。活动五、课堂检测根据学生的认知差异,本着因材施教的原则,课堂检测我采用了分层设计,第一层次基础题,检测题的第1,2,3题,第二层次提高题,检测题的选作题。最后说说板书设计:课题和三角形的内角和定理我会用红色粉笔写在黑板上方的正中央位置,例题和解题过程用白色粉笔写在黑板的左右两边,从而清晰的展现出本节课的主要内容。总之,本节课在学生已有的知识储备的基础上,证明了三角形内角和定理,并加以应用解决实际问题,理解了添加辅助线解决几何
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年园林景观照明系统设计与安装合同3篇
- 2024年版新员工劳动协议模板指导样例版B版
- 音乐教学工作计划
- 2021后勤工作总结范文
- 全年工作计划集合六篇
- 2021员工辞职报告集锦15篇
- 公司的活动总结感悟10篇
- 公司技术员个人工作总结例文8篇
- 教导工作计划四篇
- 远程培训总结(15篇)
- 装表接电培训课件
- 新苏教版五年级上册科学全册期末复习知识点(彩版)
- CJJT 164-2011 盾构隧道管片质量检测技术标准
- 2023年甘肃省定西市中考政治真题 (含解析)
- 中医科诊疗指南及技术操作规范学习试题
- 6.2《青纱帐-甘蔗林》教学设计-【中职专用】高一语文(高教版2023·基础模块下册)
- 25王戎不取道旁李公开课一等奖创新教学设计
- 中国历史文化知识竞赛100题(含答案)
- 学前儿童健康教育活动设计智慧树知到期末考试答案章节答案2024年云南国防工业职业技术学院
- 门诊叙事护理课件
- 福建省厦门市翔安区2023-2024学年八年级上学期期末语文试题
评论
0/150
提交评论