版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《反比例函数》单元测试题一.选择题(共10小题)1.下列选项中,两种量既不是成正比例的量,也不是成反比例的量的是()A.时间一定,路程与速度 B.圆的周长与它的半径 C.被减数一定,减数与差 D.圆锥的体积一定,它的底面积与高2.如图,边长为4的正方形ABCD的对称中心是坐标原点O,AB∥x轴,BC∥y轴,反比例函数y=与y=﹣的图象均与正方形ABCD的边相交,则图中阴影部分的面积之和是()A.2 B.4 C.6 3.当温度不变时,气球内气体的气压P(单位:kPa)是气体体积V(单位:m3)的函数,下表记录了一组实验数据:P与V的函数关系式可能是()V(单位:m3)11.522.53P(单位:kPa)96644838.432A.P=96V B.P=﹣16V+112 C.P=16V2﹣96V+176 D.P=4.如图,平行于x轴的直线与函数y1=(a>0,x>0),y2=(b>0.x>0)的图象分别相交于A、B两点,且点A在点B的右侧,在X轴上取一点C,使得△ABC的面积为3,则a﹣b的值为()A.6 B.﹣6 C.3 D.﹣5.如图,在同一平面直角坐标系中,反比例函数y=﹣与一次函数y=kx﹣3(k为常数,且k≠0)的图象可能是()A. B. C. D.6.若反比例函数y=的图象分布在第二、四象限,则k的取值范围是()A.k< B.k> C.k>2 D.k<27.已知反比例函数y=﹣的图象上有三个点(x1,y1)、(x2,y2)、(x3,y3),若x1>x2>0>x3,则下列关系是正确的是()A.y1<y2<y3 B.y2<y1<y3 C.y3<y2<y1 D.y2<y3<y18.如图,在菱形ABOC中,∠A=60°,它的一个顶点在反比例函数的图象上,若将菱形向下平移1个单位,点A恰好落在函数图象上,则反比例函数的解析式为()A. B. C. D.y=﹣9.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是()体积x(mL)10080604020压强y(kPa)6075100150300A.y=3000x B.y=6000x C.y= D.y=10.如图,直线y=ax(a≠0)与反比例函数y=(k≠0)的图象交于A,B两点.若点B的坐标是(3,5),则点A的坐标是()A.(﹣3,﹣5) B.(﹣5,﹣3) C.(3.﹣5) D.(5,﹣3)二.填空题(共8小题)11.函数是y关于x的反比例函数,则m=.12.反比例函数y=,当x<0时,y随x的增大而增大.那么m的取值范围是.13.已知正比例函数y=kx与反比例函数的一个交点是(2,3),则另一个交点是(,).14.已知一个函数的图象与反比例函数y=的图象关于y轴对称,则这个函数的表达式是.15.在平面直角坐标系中,一直角三角板如图放置,其中30°角的两边与双曲线y=(k≠0)在第一象限内交于A、B两点,若点A的纵坐标、点B的横坐标都是1,则该双曲线的解析式是.16.已知,点P(a,b)为直线y=x﹣2与双曲线y=的交点,则的值等于.17.如图,反比例函数y=(x>0)的图象如图,点B在图象上,连接OB并延长到点A,使AB=2OB,过点A作AC∥y轴,交y=(x>0)的图象于点C,连接OC,S△AOC=6,则k=.18.已知双曲线y=与直线y=x交于A、B两点(点A在点B的左侧).如图,点P是第一象限内双曲线上一动点,BC⊥AP于C,交x轴于F,PA交y轴于E,则的值是.三.解答题(共8小题)19.已知函数y=(m2﹣m)(1)当m为何值时,此函数是正比例函数?(2)当m为何值时,此函数是反比例函数?20.已知y=y1+y2,其中y1与x2成正比例,y2与x﹣1成反比例,且当x=﹣1时,y=3当x=2时,y=﹣3.(1)求y与x之间的函数解析式;(2)当x=,求y的值.21.已知y是x的反比例函数,且x=4时,y=6(1)写出y与x之间的函数关系式;(2)如果自变量x的取值范围为2≤x≤3.求y的取值范围.22.如图,点A、B分别在函数与的图象上,A、B的横坐标分别为a、b.(1)求△OAB的面积(用含a、b的式子表示);(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值.23.在平面直角坐标系xOy中,描点法画函数y=的图象.24.已知关于x的函数y=+x,如表是y与x的几组对应值:x…﹣4﹣3﹣2﹣﹣1﹣﹣1234…y…﹣﹣﹣﹣﹣2﹣﹣2…如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出了此函数的图象请你根据学习函数的经验,根据画出的函数图象特征,对该函数的图象与性质进行探究:(1)该函数的图象关于对称;(2)在y轴右侧,函数变化规律是当0<x<1,y随x的增大而减小;当x>1,y随x的增大而增大.在y轴左侧,函数变化规律是.(3)函数y=当x时,y有最值为.(4)若方程+x=m有两个不相等的实数根,则m的取值范围是.25.如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)直接写出不等式﹣x+3<的解集.26.如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=图象与BC交于点D,与AB交于点E,其中D(1,3).(1)求反比例函数的解析式及E点的坐标;(2)求直线DE的解析式;(3)若矩形OABC对角线的交点为F,作FG⊥x轴交直线DE于点G.①请判断点F是否在此反比例函数y=的图象上,并说明理由;②求FG的长度.
参考答案与试题解析一.选择题(共10小题)1.解:A、时间一定,路程与速度成正比例;B、圆的周长与它的半径成正比例;C、被减数一定,减数与差既不是成正比例的量,也不是成反比例;D、圆锥的体积一定,它的底面积与高成反比例;故选:C.2.解:阴影部分的面积是4×2=8.故选:D.3.解:观察发现:vp=1×96=1.5×64=2×48=2.5×38.4=3×32=96,故P与V的函数关系式为p=,故选:D.4.解:设A(,m),B(,m),则:△ABC的面积=•AB•yA=•(﹣)•m=3,则a﹣b=6.故选:A.5.解:由图象可知一次函数y=kx﹣3中,y随x的增大而增大,∴k>0,∴一次函数y=kx﹣3经过第一、三、四象限,反比例函数y=﹣的图象在二、四象限,故A选项正确、B、C、D选项错误;故选:A.6.解:∵反比例函数y=的图象分布在第二、四象限,∴1﹣2k<0,解得k>,故选:B.7.解:∵反比例函数y=﹣,∴函数图象在第二、四象限,且在每个象限内,y随x的增大而增大,∵函数的图象上有三个点(x1,y1),(x2,y2)、(x3,y3),且x1>x2>0>x3,∴y2<y1<y3,故选:B.8.解:过点C作CD⊥x轴于D,如图,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),∴A(﹣a﹣a,a)∵点A向下平移1个单位的点为(﹣a﹣a,a﹣1),即(﹣a,a﹣1),则,解得.故反比例函数解析式是:.故选:C.9.解:由表格数据可得:此函数是反比例函数,设解析式为:y=,则xy=k=6000,故y与x之间的关系的式子是y=,故选:D.10.解:把点B(3,5)代入直线y=ax(a≠0)和反比例函数y=得:a=,k=15,∴直线y=x,与反比例函数y=,,解得:,,∴A(﹣3,﹣5)故选:A.二.填空题(共8小题)11.解:∵函数是y关于x的反比例函数,∴,解得:m=2.故答案为:2.12.解:∵反比例函数y=,当x<0时,y随x的增大而增大,∴1﹣3m∴m>.故答案为:m>.13.解:正比例函数y=kx①与反比例函数②的一个交点是(2,3),∴将(2,3)代入①得k=,代入②得k=6,即正比例函数y=x③,反比例函数y=④,∴x=,解之得x=±2,把x=﹣2代入③得y=﹣3.∴另一个交点是(﹣2,﹣3).故答案为:﹣2;﹣3.14.解:反比例函数y=的图象关于y轴对称的函数x互为相反数,y不变.得y==﹣.故答案为y=﹣.15.解:∵双曲线y=(k≠0)过点A、B,且点A的纵坐标、点B的横坐标都是1,∴可设A(k,1),B(1,k).如图,过A作AC⊥x轴于C,过B作BD⊥y轴于D,则AC=BD=1,∠ACO=∠BDO=90°,OC=OD=k,∴△ACO≌△BDO(SAS),∴∠AOC=∠BOD=(∠COD﹣∠AOB)=(90°﹣30°)=30°.在Rt△AOC中,tan∠AOC=,∴OC=∴点A的坐标为(,1).∵点A(,1)为双曲线y=上的点,∴k=1×=.∴反比例函数的解析式为y=.故答案为y=.16.解:∵点P(a,b)为直线y=x﹣2与双曲线y=的交点,∴b=a﹣2,b=﹣,∴a﹣b=2,ab=﹣1.∴===﹣2.故答案是:﹣2.17.解:作BD⊥x轴于D,延长AC交x轴于E,如图,∵AC∥y轴,∴BD∥AE,∴△OBD∽△OAE,∴BD:AE=OD:OE=OB:OA,而AB=2OB,∴BD:AE=OD:OE=1:3,设OD=t,则OE=3t,∵B点和C点在反比例函数y=(x>0)的图象上,∴B点坐标为(t,),∴BD=,∴AE=,∵S△AOC=S△AOE﹣S△COE,∴•3t•﹣k=6,∴k=.故答案为.18.解1:过A作AG⊥y轴于G,过B作BH⊥x轴于H,设直线AC与x轴交于点K,如图,联立,解得:,.∵点A在点B的左侧,∴A(﹣4,﹣1),B(4,1).∴AG=4,OG=1,OH=4,BH=1.设FH=a,则有OF=OH+FH=4+a,BF2=FH2+BH2=a2+1.∵AC⊥CF,OE⊥OK,∴∠CFK=90°﹣∠CKF=∠OEK.∵AG⊥y轴,BH⊥x轴,∴∠AGE=∠BHF=90°.∴△AEG∽△BFH.∴===4.∴AE2=16BF2=16(a2+1),EG=4FH=4a∴OE==|4a﹣1|.∴EF2=(4a﹣1)2+(4+a)2=17(a2∴==1.故答案为:1.解2:过点A作AG∥BF,交x轴于点G,连接EG,如图.则有∠GAC=∠FCA=90°,∠AGO=∠BFO.∵双曲线y=与直线y=x都关于点O成中心对称,∴它们的交点也关于点O成中心对称,即OA=OB.在△AOG和△BOF中,,∴△AOG≌△BOF,∴AG=BF,OG=OF.∵OE⊥GF,∴EG=EF.∵∠GAC=90°,∴AG2+AE2=GE2,∴BF2+AE2=EF2,∴=1.故答案为:1.三.解答题(共8小题)19.解:(1)由y=(m2﹣m)是正比例函数,得m2﹣3m+1=1且m2﹣m≠解得m=3,当m=3时,此函数是正比例函数(2)由y=(m2﹣m)是反比例函数,得m2﹣3m+1=﹣1且m2﹣m≠解得m=2,当m=2时,此函数是反比例函数.20.解:(1)根据题意设y1=kx2,y2=,即y=y1+y2=kx2+,将x=﹣1,y=3,x=2,y=﹣3分别代入得:,解得:k=,m=﹣5,则y=x2+,(2)当x=时,y=x2+=16+5.21.解:(1)设y与x之间的函数关系式为:y=,且x=4时,y=6,∴k=4×6=24∴y与x之间的函数关系式为:y=(2)当x=2时,y=12,当x=3时,y=8,∵反比例函数y=的图象分别位于第一、第三象限,在每一象限内y随x的增大而减小;∴8≤y≤1222.解:作AC⊥x轴于C,BD⊥x轴于D,∴AC∥BD∥y轴,根据题意得A、B的纵坐标分别为,,∴CD=OC+OD=a﹣b,∴==;(2)根据两点间的距离公式得到,,∵△OAB是以AB为底边的等腰三角形,∴OA=OB,∴=,∴,∵a+b≠0,a>0,b<0,∴,∴ab=2.23.解:列表:x…﹣2﹣10234…y…﹣2﹣3﹣4﹣6﹣12﹣812632…描点法画出函数图象:24.解:(1)由表格中的数据可知,该函数的图象关于原点对称,故答案为:原点;(2)在y轴右侧,函数变化规律是当0<x<1,y随x的增大而减小;当x>1,y随x的增大而增大.在y轴左侧,函数变化规律是当﹣1<x<0,y随x的增大而减小;当x<﹣1,y随x的增大而增大,故答案为:当﹣1<x<0,y随x的增大而减小;当x<﹣1,y随x的增大而增大;(3)由表格可得,函数y=当x=1时,y有最小值2,故答案为:=1,小,2;(4)若方程+x=m有两个不相等的实数根,则m的取值范围是m>2或m<﹣2,故答案为:m>2或m<﹣2.25.解:(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2)把A(1,2)代入反比例函数y=,∴k=1×2=2;∴反比例函数的表达式为y=;(2)∵一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),设P(x,0),∴PC=|3﹣x|,∴S△APC=|3﹣x|×2=5,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版个人承包房地产代理合同范本二零二四年度3篇
- 2024版人力资源外包与服务合同2篇
- 2024版影视制作委托承包合同3篇
- 2024年医疗器械外加工保密协议及质量控制3篇
- 2024年度环保企业法人股权转让及环保技术转移合同3篇
- 2024年度知识产权联盟合作协议9篇
- 2024土石方工程生态保护与恢复施工合同3篇
- 2024年度离婚协议书范本提供与咨询服务合同3篇
- 学科建设高质量发展的实施框架与创新路径
- 2024年度企业市场分析与营销策划合作合同书2篇
- 从分数到分式教学设计-
- 酒店长期租房合同模板(16篇)
- 场域与对话-公共空间里的雕塑 课件-2023-2024学年高中美术人美版(2019)美术鉴赏
- 关于违规收受礼品礼金警示教育心得体会范文
- 国家开放大学《国际商法》形考任务1-5参考答案
- 颅脑损伤课件
- 沪教版英语八年级上册知识点归纳汇总
- 糖皮质激素类药物临床应用指导原则(2023年)
- 世界的海陆分布、世界的地形复习提纲
- 门诊挂号系统实验报告
- 53工厂质量保证能力要求00C-005
评论
0/150
提交评论