




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版八年级上册
第十三章
轴对称课题学习
最短路径问题教学设计人教版八年级上册第十三章轴对称
教准
多媒体课件,方体纸盒课课
13.4课学习最短路径问题共(1)课,第()时
学准执教
正方体纸盒,角板教材分析学分教
本节课是在学生已经学习了“两点之间,线段最短”“垂线段最短”的基础上,借助轴对称研究以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题究学经历将实际问题抽象数学问题利用轴对称将线段和最小问题转化两之间,线段最短”问题最短路径问题从本质上说是极值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的极值问题,更会感到陌生,无从下手。1.能利用轴对称解决简单的最短径问题。知识与技能2.体图形的变化在解决最值问题中的作用。3.感悟转化思想。学目标
过程与方法情感态度与价值观
1.在将实际问题抽象成几何图形过程,高分析问题、解决问题的能力。;2.渗透数学建模的思想。通过有趣的问题提高学习数学的兴.体验数学学习的实用,体现人都学有所用的数学教重教难
利用轴对称将最短路径问题转化为“两点之间,线段最短”问题;培养学生解决实际问题的能力.路径最短的证明教过设计一、以旧引新激情引趣1、用101PPT中课的一道习题,复习两点之间,线段最短”1
设意为了激发学生的求知欲用蚂蚁爬行最短路径问题激情引趣。充分利用学科工具中立体展开还原的动画过程学生通过观察纸盒的打开过程,寻找蚂蚁的爬行捷径而引出线段公理点之间线段最短和垂线段的性质:垂线段最短让学生体会新知识是在原有知识基础上“生长”出来的。以旧引新给予学生亲切感树立学好本节课的信心。教过设计二、展示目标,合理定位利用思维导图,展示本节课的学习目标
设意以思维导图的形式逐级逐层出现目标,给学生一个合理的学习目标。系。
思维导图给学生以知识体三、探究新知,教师主导、师生一起借助信息技术探究“将军饮马问题(一传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题:将军每天骑马从城堡出发,到军营,途中马要到小溪边饮水一次。将军问怎样走路程最短?
以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题研究,仍然具有激发学生学习兴趣的目的。利用信息系技术引导学生将河流抽象成一条直线,将城堡和军营抽象成两个点,将实际问题转化成数学问题。如果点A与在线l异怎样找到点C的位置由此及彼得出:利用轴对称可以先找到点A关直l的称点,连接AB,与直线l较于点C,点就所做的点。让学生体会由AB在直线l“同侧”联想到“异侧”然后再回到“同侧”体会图形的变换在解决最值问题中的作用,感悟转化思想,进一步获得数学活动的经验增强应用意识.2教过设计最短证明:利用多媒体课件几何画板功能,让学生自己动手,拉动移动点C的位置,观看AC+BC的值变化。体会“短路径”引导学生归纳总结出解决实际问题的一般模式巩固练习
设意充分利用了101PPT中的多媒体资源中的动画演示,利用多媒体课件几何画板功能,让学生自己动手,拉动移动点C的位置,观看AC+BC的数值变化。体会“最短路径”突破难点此例题的经典之处在于运用“轴对称”将最短路径问题转化为线段和最小问题引导学生通过观察分析、抽象与归纳,得到解决实际问题的一般模式本题选自101PPT中自带习题,想通过学生自主解答,检查学生掌握情况。学生可以查看解答提示,可以查看答案。可以上传答案。强大的功能,为不同的学生学到不同的数学提供了机会。四、合作探究、学生主体军饮马问题二从A地发,先到草地边的某一处牧马,再到河边饮马,然后回到B处请画出最短路径。学生通过小组合作,把实际问题转化成数学问题。、小组合作,画出最短路径。3
让学生自己亲身经历实际问题转化成数学问题的过程,提高学生解决实际问题的能力教师经历了扶”的过程,实现“以教师为主导,学生为主体”教过设计
设意学生在交流中成长。、多媒体展示学习成果每组选出代表交流学习成果。、巩固练习两道练习题均选自中自带习题,想通过学生自主解答,检查学生掌握情况。学生可以查看解答提示,可以查看答案以上传答案101PPT强大的功能,为不同的学生学到不同的数学提供了机会。五、课堂小结引导学生自己总结本课收获作业教学反思:思信技术的应用大大提高了学生学习数学的兴趣中为明显的有两点,一是利用几何画板,让学生观察随着点C位置的变化,AC+BC的随之变化,只有当点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年高中地理课时分层作业5含解析湘教版必修3
- 2024-2025学年高中政治第二单元探索世界与追求真理第4课第1框世界的物质性随堂作业含解析新人教版必修4
- 2024-2025学年新教材高中英语课时分层作业6含解析新人教版必修1
- 工程监理报告3
- 2024-2025学年高中物理第3章恒定电流第3节焦耳定律课时作业含解析鲁科版选修3-1
- 2024-2025学年高中物理第6章万有引力与航天第5节宇宙航行课时分层训练新人教版必修2
- 工业泵配件项目可行性研究报告
- 体温计的不良事件报告表
- 2024-2030年中国法莫替丁片行业市场发展监测及投资方向研究报告
- 能源管理项目可行性分析报告(模板参考范文)
- 施工方案与技术措施合理性、科学性与可行性
- 小学体育课件《立定跳远课件》课件
- 《生物经济学》课程教学大纲
- 2018中国技能⼤赛全国选拔赛“3D数字游戏艺术”项⽬技能样题
- 家庭清洁课件教学课件
- 2024-2025学年北师版八年级生物上学期 第18章 生物圈中的微生物(知识清单)
- 2024年重庆客运驾驶员考试卷及答案
- API设计与文档规范
- TDALN 033-2024 学生饮用奶安全规范入校管理标准
- 物流无人机垂直起降场选址与建设规范
- JT-T-775-2016大跨度斜拉桥平行钢丝拉索
评论
0/150
提交评论