鲁教版数学(五四制)六年级上册主要知识点_第1页
鲁教版数学(五四制)六年级上册主要知识点_第2页
鲁教版数学(五四制)六年级上册主要知识点_第3页
鲁教版数学(五四制)六年级上册主要知识点_第4页
鲁教版数学(五四制)六年级上册主要知识点_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学六年级上册主要知识点第一章丰富的图形世界1、立体图形的分类2、棱柱的底面边数与面数、顶点、棱数之间的关系棱柱面的个数顶点的个数侧棱数棱数三棱柱5639四棱柱68412五棱柱710515六棱柱812618n棱柱n+22nn3n3、点线面之间的关系4、正方体的平面展开图及展开图中的相对面类型展开图口诀、判定方法1-4-1型中间四个面,上下各一面“同层隔一面”为对立面,剩下的上下两个为对立面。2-3-1型或1-3-2型中间三个面,一二隔河现在同层中有连续的三个正方形,利用“同层隔一面”,Z字形两尖处为对立面,剩下的两个为对立面。2—2—2型中间两个面,楼梯天天见不存在同层连续三个或四个正方形的情况,利用“异层隔两面”的方法3—0—3型中间没有面,三三连一线含有同层连续的三个正方形,利用“同层隔一面”的方法。5、其它常见几何体的平面展开图长方体四棱锥三棱柱圆柱圆锥五棱柱注意:圆柱的侧面展开图是长方形,长方形的长等于底面圆的周长,长方形的宽为圆柱的高。6、常见几何体的截面形状、截面的边数与面数的关系若一个几何体的各面都是平面,则所得几何体一定是多边形;若几何体有曲面,则所得截面可能是多边形,也可能是由直线和曲线组成的图形,还可能是仅有曲线组成的图形。注意:一个平面与几何体的几个面相交就得到几条线,截面的形状就为几边形。用一个平面截几何体时,截面的边数最多等于被截几何体的面数。例如:正方体有6个面,用一个平面去截正方体,截面最多为六边形。(1)正方体的截面形状三角形锐角三角形等腰三角形等边三角形四边形平行四边形矩形正方形梯形五边形任意五边形六边形任意六边形正六边形(2)圆柱的截面形状圆形长方形椭圆类似于拱形类似于梯形(3)圆锥的截面形状圆形椭圆类似于拱形类似于拱形等腰三角形(4)球的截面形状用平面截球时,截面的形状都是圆,只是圆的大小可能不同7、几何体三视图主视图反映物体的长和高;俯视图反映物体的长和宽;左视图反映物体的宽和高.因此,在画三种视图时:主视图与俯视图:长对正;主视图与左视图:高平齐;俯视图与左视图:宽相等。(1)画三视图的步骤先确定列数,再确定每列正方形的个数。①确定列数的方法:主视图的列数=俯视图的列数;左视图的列数等于俯视图的行数。左视图第一列对应俯视图从上面数第一行。②确定每列正方形个数的方法:每列最高层数是几,该列正方形个数就是几。(2)常见几何体的三视图几何体主视图左视图俯视图(3)根据三视图确定几何体需要的小正方体的个数例:如图所示是由大小相同的小正方体组成的几何体从正面、左面、上面看到的形状图,那么组成这个几何体的小正方形的个数是()方法:以从上面看到的形状图为基础,依据主视图的列数=俯视图的列数;左视图的列数等于俯视图的行数。(4)根据从上面看到的视图及各位置上小正方体个数确定几何体例:由几个大小相同的小正方体搭成的几何体从上面看到的形状图如图所示,小正方体中的数字表示该位置上小正方体的个数,试画出从正面、左面看到的这个几何体的形状图。8、求几何体的体积(1)长方形旋转得到圆柱体将一个长、宽分别为5cm、4cm的长方形绕它的一条边所在直线旋转一周,得到一个新的几何体为圆柱。①绕长边所在直线旋转,则长为圆柱体的高,而宽则成为圆柱体的半径,根据体积公式V②绕宽边所在直线旋转,则宽为圆柱体的高,而长则成为圆柱体的半径,根据体积公式V(2)三角形旋转得到圆锥将直角三角形ABC绕三角形的边AB所在直线旋转一周,得到圆锥,圆锥的高为AB的长,BC长为圆锥底面圆的半径。根据圆锥的体积V

第二章有理数及其运算1、有理数的分类按定义分:按性质分:注意:(1)正数大于0,负数小于0;0既不是正数,也不是负数。(2)有限小数和无限循环小数属于分数。例如:1.2和2.13131313⋯⋯2、数轴(1)数轴的三要素:原点、正方向和单位长度(2)画数轴的注意事项①同一条数轴上的单位长度必须统一,不能出现同样长度单位表示不同的数量或者不同单位长度表示同一数量。②数轴是一条直线,两端不能画点,表示正方向的一侧要画箭头。(3)数轴上表示的数右边的总比左边的大3、相反数、绝对值、倒数(1)相反数①代数意义:只有符号不同的两个数互为相反数。如:13和-13;7和-7都是相反数。一般地,数a的相反数是-a,记作-(a)=-a,-a的相反数是a,即-(-②几何意义:在数轴上,表示互为相反数的两个点位于原点的两侧,且与原点的距离相等。③正数的相反数是负数,负数的相反数是正数。特别地,0的相反数是0.注意:相反数等于它本身的数只有0。④如果a,b互为相反数,则a+b=0.(2)绝对值①在数轴上,一个所对应的点与原点之间的距离叫做这个数的绝对值,数a的绝对值记作a。从几何意义来看,一个数的绝对值表示这个数与原点之间的距离,所以绝对值不可能为负数。②正数的绝对值是正数,负数的绝对值是负数,0的绝对值是0.a③绝对值的非负性:a④互为相反数的两个数的绝对值相等,可表示为a⑤绝对值等于同一个正数的数有两个,这两个数互为相反数。即若a=3,则a=3⑥两个负数比较大小,绝对值大的反而小。例如:-5和-8比较大小:因为5<两个分数比较大小要先通分再比较;既有分数又有小数的,应先统一成分数再比较。(3)倒数①定义:若两个数的乘积为1,那么称其中一个数是另一个的倒数。也称这两个数互为倒数。②如何求一个数的倒数?方法一:将这个数写成分数的形式,直接将分子分母颠倒,符号不变。例如:-34的倒数为-4方法二:用1除以一个数,商就是这个数的倒数。③正数的倒数是正数,负数的倒数是负数,1的倒数是1,-1的倒数是-1,0没有倒数。等于本身的数:相反数等于本身的数是0;绝对值等于本身的数是非负数(0和正数);倒数等于本身的数是±1。4、有理数的运算(1)有理数的加法运算法则同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,例如:-7+7=0绝对值不等时,取绝对值较大数的符号,并用较大数的绝对值减去较小数的绝对值。例如:-10+7=-(10-7)=-3一个数与0相加,仍得这个数。例如:12+0=12(2)有理数的减法运算法则减去一个数等于加上这个数的相反数。例如:-18-14=-18+(-14)=-(18+14)=-32;-23-(-16)=-23+16=-(23-16)=-7(3)有理数的乘法运算法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;例如:(-3)×(-5)=15;(-6)×9=-54任何数与0相乘积仍为0.法则二:几个不等于0的数相乘,积的符号由负因数的个数决定。当负因数的个数为奇数时,积的符号为负;当负因数的个数为偶数时,积的符号为正。积的绝对值等于各因数绝对值的乘积。如:(-4)×(-5)×(-2)×(-6)×(-3)=-4×5×2×6×3=-720(-4)×(-5)×(-2)×(-6)=4×5×2×6=240几个数相乘,有一个因数为0时,积就为0例如:(-4)×(-5)×(-2)×0=0(4)有理数的除法运算法则法则一:两个有理数相除,同号得正,异号得负,并把绝对值相除.例如:-18÷3=-0除以任何非0的数都得0.例如:0÷法则二:除以一个数等于乘这个数的倒数。即:a÷b=a×例如:-15÷3(5)有理数的乘方运算法则n个a①定义:n个相同的因数a相乘,即a∙a∙a∙a⋯∙a,记作an这种求n个相同因数a的积的运算叫做乘方,乘方的结果叫做幂,a叫做底数,n叫做指数,an读作“a的n次幂”(或a的n次方)例如:-53的底数是-5,指数是3,表示3个-5注意:负数的乘方,在书写时一定要把整个负数用小括号括起来;分数的乘方,在书写时一定要把整个分数用小括号括起来.例如:-52表示2个5相乘的相反数,-52表示2个-5相乘;-132表示3个-②正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;1的任何次幂都为1;-1的奇次幂是-1;-1的偶次幂是1。10的几次幂,1的后面就有几个0。③乘方的计算-52=-5×5=-25-15、科学计数法把一个大于10的数,写成a×10n的形式,其中1≤a<10,n是正整数,这种方法叫做科学记数法。注意:当大数是大于10的整数时,n为整数位减去1。例如:24500000是8位数,写成科学计数法为2.45×1076、近似数题型一:按下列要求取这个数的近似数(1)270.18(精确到个位)≈270(2)27.04(精确到0.1)≈27.0注意:1.先找到要精确的数位,对后一个数位进行四舍五入;2.近似数中的0不能省略;题型二:下列由四舍五入法得到的近似数,各精确到哪一位?(1)100.17;(2)42.3万;(3)1.25×(1)100.17精确到百分位;(2)42.3万精确到千位;(3)1.25×104题型三:已知一个数的近似数,求这个数的范围一个数取近似数为38万,则这个数所表示的范围:大于或等于37.5万,而小于38.5万的数。

第三章整式及其加减1、代数式(1)代数式的概念用基本的运算符号把数或表示数的字母连接而成的式子叫代数式。注意:单独的一个数或一个字母也是代数式。如:a、1、0。(2)书写代数式的注意事项:①a×b通常写作a·b或ab;②1÷a通常写作1a③数字通常写在字母前面,如:a×3通常写作3a;④带分数一般写成假分数.如:115×a通常写作6⑤在实际问题中含有单位时,如果最后运算结果是和或差的形式时,要把整个的代数式括起来再写单位。如小华、小明一共走了(6x+6y)米。2、整式(1)单项式①数与字母的乘积,这样的代数式叫做单项式。单独的一个数或一个字母也是单项式,如a,10。注意:单项式中数与字母或字母与字母之间是乘积关系,例如:x2可以看成12∙x,所以x2是单项式;而2x②系数:单项式中的数字因数叫做这个单项式的系数。如:-23a这个单项式的系数为-2注意:单项式的系数包括其前面的符号;当一个单项式的系数是1或时,“1”通常省略不写,但符号不能省略.如:等;π是圆周率的代号,不是单项式概念中的字母,应把它作为字母的系数。③次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。如:a2b注意:计算单项式的次数时,不要漏掉字母的指数为1的情况.如的次数为,而不是5;切勿加上系数上的指数,如的次数是3,而不是8;的次数是5,而不是6;单独一个非零数(常数项)的次数是0(2)多项式①概念:几个单项式的和叫做多项式其含义是:必须由单项式组成;体现和的运算法则.②项:多项式中的每一个单项式,叫做多项式的项,其中不含字母的项叫做常数项。如:多项式-2x3+x3y4注意:多项式的项包括它前面的符号,如上例中常数项是-9,而不是9.③次数:多项式中次数最高的项的次数,就是这个多项式的次数。注意:要防止把多项式的次数与单项式的次数相混淆,而误认为多项式的次数是各项次数之和.如:-2x3+x3y4-9中,-2x3的次数为3,x3④合并同类项后的多项式中,含有几项,就叫做几项式。(判断一个多项式是几次几项式必须先合并同类项后再判断)如:-2x3+x3⑤单项式和多项式统称整式.3、同类项与合并同类项(1)同类项所含字母相同,并且相同字母的指数也相同的项,叫做同类项。注意:①同类项与系数无关,与字母的排列也无关。如:2x与3x是同类项;3xy与5yx是同类项。②几个常数项也是同类项。(2)合并同类项①概念:把多项式中相同的项合并成一项叫做合并同类项.注意:合并同类项时,只能把同类项合并成一项,不是同类项的不能合并,如2a+3b=5ab显然不正确;不能合并的项,在每步运算中不要漏掉.②合并同类项法则:把同类项系数相加,字母及字母的指数保持不变。例如:-2合并同类项的步骤:“一标”“二搬”“三合并”注意:合并同类项,只是系数上的变化,字母与字母的指数不变,不能将字母的指数相加;合并同类项的依据是加法交换律、结合律及乘法分配律;4、去括号去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉后,原来括号里各项的符号都不改变;括号前是“-”号,把括号和它前面的“-”号去掉后,原来括号里各项的符号都要改变。注意:去括号的依据是乘法分配律,当括号前面有数字因数时,应先利用分配律计算,切勿漏乘;明确法则中的“都”字,变符号时,各项都变;若不变符号,各项都不变.例如:;当出现多层括号时,一般由里向外逐层去括号,如遇特殊情况,为了简便运算也可由外向内逐层去括号.5、整式加减运算的步骤先去括号再合并同类项6、探索与表达规律

第四章1、相关概念(1)等式:用等号连接的左右两边相等的式子叫做等式。例如:3+2=5是等式,而3+2不是等式,因为没有等号它是代数式。(2)方程:含有未知数的等式叫做方程.例如:2+x=3是方程,而3+2=5不是方程,因为没有未知数。注意:①混淆等式与代数式.等式中含有等号,代数式中不含有等号,等式可以用来表示两个代数式之间的相等关系,但代数式不是等式.②混淆方程与等式.判断一个式子是否是方程只需看两点:一是等式;二是含有未知数,两者缺一不可.就是说,方程一定是等式,而等式不一定是方程.(3)一元一次方程:只含有一个未知数,并且未知数的指数是1的方程叫做一元一次方程.例如:2+x=3是一元一次方程,而x+y=3不是,因为含有两个未知数,x2(4)方程的解:使方程左右两边相等的未知数的值叫做方程的解.注意:判断一个数值是否为方程的解,只需将该数值代入到方程中,若方程左右两边相等,则该数值为此方程的解。(5)解方程:求方程的解的过程叫做解方程.2、等式的性质等式的性质1:等式两边都加上(或减去)同一个代数式,所得结果仍是等式.等式的性质2:等式两边同时乘同一个数(或除以同一个不为0的数),所得结果仍是等式.3、解一元一次方程一般有五个步骤,具体的做法、依据、注意点如下:(1)去分母:即在方程两边都乘各分母的最小公倍数,依据是等式性质2,去分母时不要漏乘不含分母的项;分子是多项式时应加括号.(2)去括号:即一般是先去小括号,再去中括号,最后去大括号.依据是分配律,注意任何项不能漏乘括号内的每一项;若括号前面是“-”号,记住去括号时括号内各项都要变符号.(3)移项:即一般把含有未知数的项都移到方程的左边,其它项移到另一边.从方程的一边移到另一边应注意变号;在同一边改变项的位置不叫移项,因此也不变号.(4)合并同类项:把方程化成ax=b(a≠0)的形式.(5)未知数的系数化为1:方程两边同除以未知数的系数.依据是等式性质2.注意:在解一元一次方程时常见的错误.①移项不变号.如,解方程4x-5=2-2x,错误地移项,得4x-2x=2-5,将-5移到等号右边没有变号,将-2x移到等号左边也没有变号;②去括号时漏乘括号中的项或忽视符号.如,解方程-3(x+5)=11时,错误地去括号,得-3x+5=11,可以先将3乘进括号,将“-”留在括号外面,得-3x+15,再去括号,得-3x-15;③去分母时漏乘不含分母的项或忽视分数线的括号作用.例如:x+32-1=4-x3,错误地去分母得3x+34、一元一次方程解应用题列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(1)和差倍分问题增长量=原有量×增长率现在量=原有量+增长量年龄问题:解这类问题的基本关系是抓住两个人年龄的增长数相等。年龄问题的主要特点是:时间发生变化,年龄在增长,但是年龄差始终不变。年龄问题往往是“和差”、“差倍”等问题的综合应用。(2)等积变形问题依据形虽变,但体积、周长、面积不变.①圆柱体的体积公式V=底面积×高=S·h=r2h②长方体的体积V=长×宽×

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论