




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知在中,为线段上一点,且,若,则()A. B. C. D.2.在数列中,,,则的值为:A.52 B.51 C.50 D.493.已知数列是公比为2的等比数列,满足,设等差数列的前项和为,若,则()A.34B.39C.51D.684.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B. C. D.5.如图,正方形中,分别是的中点,若则()A. B. C. D.6.已知圆,圆,分别为圆上的点,为轴上的动点,则的最小值为()A. B. C. D.7.已知圆:及直线:,当直线被截得的弦长为时,则等于()A. B. C. D.8.一个正四棱锥的底面边长为2,高为,则该正四棱锥的全面积为A.8 B.12 C.16 D.209.设数列是等差数列,是其前项和,且,,则下列结论中错误的是()A. B. C. D.与均为的最大值10.若函数()有两个不同的零点,则实数m的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图是一正方体的表面展开图.、、都是所在棱的中点.则在原正方体中:①与异面;②平面;③平面平面;④与平面形成的线面角的正弦值是;⑤二面角的余弦值为.其中真命题的序号是______.12.若x、y满足约束条件,则的最大值为________.13.在等比数列{an}中,a114.如图,在△中,三个内角、、所对的边分别为、、,若,,为△外一点,,,则平面四边形面积的最大值为________15.直线x-316.一个封闭的正三棱柱容器,该容器内装水恰好为其容积的一半(如图1,底面处于水平状态),将容器放倒(如图2,一个侧面处于水平状态),这时水面与各棱交点分别为E,F、,,则的值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.18.已知.(1)求函数的最小正周期和对称轴方程;(2)若,求的值域.19.在直三棱柱中,,,,分别是,的中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.20.已知函数.(1)求的最小正周期及单调递增区间;(2)求在区间上的最大值和最小值.21.在凸四边形中,.(1)若,,,求的大小.(2)若,且,求四边形的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
首先,由已知条件可知,再有,这样可用表示出.【详解】∵,∴,,∴,∴.故选C.【点睛】本题考查平面向量基本定理,解题时用向量加减法表示出,然后用基底表示即可.2、A【解析】
由,得到,进而得到数列首项为2,公差为的等差数列,利用等差数列的通项公式,即可求解,得到答案.【详解】由题意,数列满足,即,又由,所以数列首项为2,公差为的等差数列,所以,故选A.【点睛】本题主要考查了等差数列的定义,以及等差数列的通项公式的应用,其中解答中熟记等差数列的定义,以及等差数列的通项公式是解答的关键,着重考查了推理与运算能力,属于基础题.3、D【解析】由数列是公比为的等比数列,且满足,得,所以,所以,设数列的公差为,则,故选D.4、C【解析】
将平移到一起,根据等边三角形的性质判断出两条异面直线所成角的大小.【详解】连接如下图所示,由于分别是棱和棱的中点,故,根据正方体的性质可知,所以是异面直线所成的角,而三角形为等边三角形,故.故选C.【点睛】本小题主要考查空间异面直线所成角的大小的求法,考查空间想象能力,属于基础题.5、D【解析】试题分析:取向量作为一组基底,则有,所以又,所以,即.6、D【解析】
求出圆关于轴的对称圆的圆心坐标A,以及半径,然后求解圆A与圆的圆心距减去两个圆的半径和,即可求得的最小值,得到答案.【详解】如图所示,圆关于轴的对称圆的圆心坐标,半径为1,圆的圆心坐标为,,半径为3,由图象可知,当三点共线时,取得最小值,且的最小值为圆与圆的圆心距减去两个圆的半径之和,即,故选D.【点睛】本题主要考查了圆的对称圆的方程的求解,以及两个圆的位置关系的应用,其中解答中合理利用两个圆的位置关系是解答本题的关键,着重考查了数形结合法,以及推理与运算能力,属于基础题.7、C【解析】
求出圆心到直线的距离,由垂径定理计算弦长可解得.【详解】由题意,圆心为,半径为2,圆心到直线的距离为,所以,解得.故选:C.【点睛】本题考查直线与圆相交弦长问题,解题方法由垂径定理得垂直,由勾股定理列式计算.8、B【解析】
先求侧面三角形的斜高,再求该正四棱锥的全面积.【详解】由题得侧面三角形的斜高为,所以该四棱锥的全面积为.故选B【点睛】本题主要考查几何体的边长的计算和全面积的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.9、C【解析】
根据等差数列的性质,结合,,分析出错误结论.【详解】由于,,所以,,,所以,与均为的最大值.而,所以,所以C选项结论错误.故选:C.【点睛】本小题主要考查等差数列的性质,考查分析与推理能力,属于基础题.10、A【解析】
函数()有两个不同的零点等价于函数在均有一个解,再解不等式即可.【详解】解:因为,由函数()有两个不同的零点,则函数在均有一个解,则,解得:,故选:A.【点睛】本题考查了分段函数的零点问题,重点考查了分式不等式的解法,属中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、①②④【解析】
将正方体的表面展开图还原成正方体,利用正方体中线线、线面以及面面关系,以及直线与平面所成角的定义和二面角的定义进行判断.【详解】根据条件将正方体进行还原如下图所示:对于命题①,由图形可知,直线与异面,命题①正确;对于命题②,、分别为所在棱的中点,易证四边形为平行四边形,所以,,平面,平面,平面,命题②正确;对于命题③,在正方体中,平面,由于四边形为平行四边形,,平面.、平面,,.则二面角所成的角为,显然不是直角,则平面与平面不垂直,命题③错误;对于命题④,设正方体的棱长为,易知平面,则与平面所成的角为,由勾股定理可得,,在中,,即直线与平面所成线面角的正弦值为,命题④正确;对于命题⑤,在正方体中,平面,且,平面.、平面,,,所以,二面角的平面角为,在中,由勾股定理得,,由余弦定理得,命题⑤错误.故答案为①②④.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面关系的判断以及线面角、二面角的计算,判断时要从空间中有关线线、线面、面面关系的平行或垂直的判定或性质定理出发进行推导,在计算空间角时,则应利用空间角的定义来求解,考查推理能力与运算求解能力,属于中等题.12、18【解析】
先作出不等式组所表示的平面区域,再观察图像即可得解.【详解】解:作出不等式组所表示的平面区域,如图所示,由图可得:目标函数所在直线过点时,取最大值,即,故答案为:.【点睛】本题考查了简单的线性规划问题,重点考查了作图能力,属基础题.13、64【解析】由题设可得q3=8⇒q=3,则a714、【解析】
根据题意和正弦定理,化简得,进而得到,在中,由余弦定理,求得,进而得到,,得出四边形的面积为,再结合三角函数的性质,即可求解.【详解】由题意,在中,因为,所以,可得,即,所以,所以,又因为,可得,所以,即,因为,所以,在中,,由余弦定理,可得,又因为,所以为等腰直角三角形,所以,又因为,所以四边形的面积为,当时,四边形的面积有最大值,最大值为.故答案为:.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.15、π【解析】
将直线方程化为斜截式,利用直线斜率与倾斜角的关系求解即可.【详解】因为x-3所以y=33x-33则tanα=33,α=【点睛】本题主要考查直线的斜率与倾斜角的关系,意在考查对基础知识的掌握情况,属于基础题.16、【解析】
设,则,由题意得:,由此能求出的值.【详解】设,则,由题意得:,解得,.故答案为:.【点睛】本题考查两线段比值的求法、三棱柱的体积等基础知识,考查运算求解能力,是中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)或.【解析】
分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.【详解】详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.18、(1)对称轴为,最小正周期;(2)【解析】
(1)利用正余弦的二倍角公式和辅助角公式将函数解析式进行化简得到,由周期公式和对称轴公式可得答案;(2)由x的范围得到,由正弦函数的性质即可得到值域.【详解】(1)令,则的对称轴为,最小正周期;(2)当时,,因为在单调递增,在单调递减,在取最大值,在取最小值,所以,所以.【点睛】本题考查正弦函数图像的性质,考查周期性,对称性,函数值域的求法,考查二倍角公式以及辅助角公式的应用,属于基础题.19、(1)证明见解析。(2)【解析】
(1)首先根据已知得到,再根据线面平行的判定即可得到平面.(2)首先根据线面垂直的判定证明平面,即可找到为与平面所成角,在计算其正弦值即可.【详解】(1)因为分别是,的中点,所以四边形为平行四边形,即.平面,所以平面.(2)因为,为中点,所以.平面.所以为与平面所成角.在中,,,所以,.在中,,,所以.【点睛】本题第一问考查线面平行的判定,本题第二问考查线面成角,属于中档题.20、(1);单调递增区间为:;(2)最大值;最小值.【解析】
(1)先将函数化简整理,得到,由得到最小正周期;根据正弦函数的对称轴,即可列式,求出对称轴;(2)先由,得到,根据正弦函数的性质,即可得出结果.【详解】(1)因为,所以最小正周期为:;由得,即单调递增区间是:;(2)因为,所以,因此,当即时,取最小值;当即时,取最大值;【点睛】本题主要考查正弦型三角函数的周期、对称轴,以及给定区间的最值问题,熟记正弦函数的性质,以及辅助角公式即可,属于常考题型.21、(1);(2)【解析】
(1)在中利用余弦定理可求得,从而可知,求得;在中利用正弦定理求得结果;(2)在中利用余弦定理和可表示出;在中利用余弦定理可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年湖南货车从业资格证题
- 2025年兴安年货运从业资格证考试题库
- 2025年北京货运从业资格证模拟考试题库及答案
- 数字孪生新质生产力
- 新质生产力的主导
- 2025至2031年中国洁具组合件行业投资前景及策略咨询研究报告
- 三年级上册《语文园地四》教学设计及教学反思-0
- 2025至2031年中国注塑料行业投资前景及策略咨询研究报告
- 《兵工企业常用焊接方法与设备使》课件-对接接头单双面埋弧焊
- 大学生撤销处分申请书
- 低碳生活 主题班会课件-2篇
- 会下金蛋的鹅课件
- 实验室组织机构图
- 2024年河南省郑州市中考一模语文试题(含答案解析)
- 小学语文二年级上册《去外婆家》教学设计二
- 2024年《金融市场基础知识》冲刺复习讲义
- GB/T 4706.10-2024家用和类似用途电器的安全第10部分:按摩器具的特殊要求
- DL∕T 860.10-2018 电力自动化通信网络和系统 第10部分:一致性测试
- 2024多级AO工艺污水处理技术规程
- 电影鉴赏评论智慧树知到期末考试答案章节答案2024年山东艺术学院
- (新版)碳排放管理员(高级)职业鉴定考试题库(含答案)
评论
0/150
提交评论