版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示是的图象的一段,它的一个解析式为()A. B.C. D.2.方程表示的曲线是()A.一个圆 B.两个圆 C.半个圆 D.两个半圆3.已知,其中,则()A. B. C. D.4.设函数,其中为已知实常数,,则下列命题中错误的是()A.若,则对任意实数恒成立;B.若,则函数为奇函数;C.若,则函数为偶函数;D.当时,若,则().5.已知,那么()A. B. C. D.6.设,是平面内一组基底,若,,,则以下不正确的是()A. B. C. D.7.已知a,b,,且,,则()A. B. C. D.8.若函数,又,,且的最小值为,则正数的值是()A. B. C. D.9.法国学者贝特朗发现,在研究事件A“在半径为1的圆内随机地取一条弦,其长度超过圆内接等边三角形的边长3”的概率的过程中,基于对“随机地取一条弦”的含义的的不同理解,事件A的概率PA存在不同的容案该问题被称为贝特朗悖论现给出种解释:若固定弦的一个端点,另个端点在圆周上随机选取,则PA.12 B.13 C.110.正方体中,则异面直线与所成的角是A.30° B.45° C.60° D.90°二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为____________.12.设向量与向量共线,则实数等于__________.13.不等式的解集是_______.14.如图,在正方体中,点是棱上的一个动点,平面交棱于点.下列命题正确的为_______________.①存在点,使得//平面;②对于任意的点,平面平面;③存在点,使得平面;④对于任意的点,四棱锥的体积均不变.15.已知是边长为的等边三角形,为边上(含端点)的动点,则的取值范围是_______.16.已知函数,为的反函数,则_______(用反三角形式表示).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,矩形所在平面与以为直径的圆所在平面垂直,为中点,是圆周上一点,且,,.(1)求异面直线与所成角的余弦值;(2)设点是线段上的点,且满足,若直线平面,求实数的值.18.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82848589798091897974乙班:90768681848786828583(1)求两个样本的平均数;(2)求两个样本的方差和标准差;(3)试分析比较两个班的学习情况.19.已知数列满足,.(1)证明:数列为等差数列;(2)求数列的前项和.20.设函数.(1)已知图象的相邻两条对称轴的距离为,求正数的值;(2)已知函数在区间上是增函数,求正数的最大值.21.如图,三棱柱的侧面是边长为2的菱形,,且.(1)求证:;(2)若,当二面角为直二面角时,求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据函数的图象,得出振幅与周期,从而求出与的值.【详解】根据函数的图象知,振幅,周期,即,解得;所以时,,;解得,,所以函数的一个解析式为.故答案为D.【点睛】本题考查了函数的图象与性质的应用问题,考查三角函数的解析式的求法,属于基础题.2、D【解析】原方程即即或故原方程表示两个半圆.3、D【解析】
先根据同角三角函数关系求得,再根据二倍角正切公式得结果.【详解】因为,且,所以,因为,所以,因此,从而,,选D.【点睛】本题考查同角三角函数关系以及二倍角正切公式,考查基本分析求解能力,属基础题.4、D【解析】
利用两角和的余弦公式化简表达式.对于A选项,将化简得到的表达式代入上述表达式,可判断出A选项为真命题.对于B选项,将化简得到的表达式代入上述表达式,可判断出为奇函数,由此判断出B选项为真命题.对于C选项,将化简得到的表达式代入上述表达式,可判断出为偶函数,由此判断出C选项为真命题.对于D选项,根据、,求得的零点的表达式,由此求得(),进而判断出D选项为假命题.【详解】.不妨设.为已知实常数.若,则得;若,则得.于是当时,对任意实数恒成立,即命题A是真命题;当时,,它为奇函数,即命题B是真命题;当时,,它为偶函数,即命题C是真命题;当时,令,则,上述方程中,若,则,这与矛盾,所以.将该方程的两边同除以得,令(),则,解得().不妨取,(且),则,即(),所以命题D是假命题.故选:D【点睛】本小题主要考查两角和的余弦公式,考查三角函数的奇偶性,考查三角函数零点有关问题的求解,考查同角三角函数的基本关系式,属于中档题.5、A【解析】依题意有,故6、D【解析】
由已知及平面向量基本定理可得:,问题得解.【详解】因为,是平面内一组基底,且,由平面向量基本定理可得:,所以,所以D不正确故选D【点睛】本题主要考查了平面向量基本定理的应用,还考查了同角三角函数的基本关系,属于较易题.7、A【解析】
利用不等式的基本性质以及特殊值法,即可得到本题答案.【详解】由不等式的基本性质有,,故A正确,B不正确;当时,,但,故C、D不正确.故选:A【点睛】本题主要考查不等式的基本性质,属基础题.8、D【解析】,由,得,,由,得,则,当时,取得最小值,则,解得,故选D.9、B【解析】
由几何概型中的角度型得:P(A)=2π【详解】设固定弦的一个端点为A,则另一个端点在圆周上BC劣弧上随机选取即可满足题意,则P(A)=2π故选:B.【点睛】本题考查了几何概型中的角度型,属于基础题.10、C【解析】连接A,易知:平行A,∴异面直线与所成的角即异面直线与A所成的角,连接,易知△为等边三角形,
∴异面直线与所成的角是60°故选C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先将和分别解出来,然后求交集即可【详解】要使,则有且由得由得因为所以原函数的定义域为故答案为:【点睛】解三角不等式的方法:1.在单位圆中利用三角函数线,2.利用三角函数的图像12、3【解析】
利用向量共线的坐标公式,列式求解.【详解】因为向量与向量共线,所以,故答案为:3.【点睛】本题考查向量共线的坐标公式,属于基础题.13、【解析】
且,然后解一元二次不等式可得解集.【详解】解:,∴且,或,不等式的解集为,故答案为:.【点睛】本题主要考查分式不等式的解法,关键是将分式不等式转化为其等价形式,属于基础题.14、①②④【解析】
根据线面平行和线面垂直的判定定理,以及面面垂直的判定定理和性质分别进行判断即可.【详解】①当为棱上的一中点时,此时也为棱上的一个中点,此时//,满足//平面,故①正确;②连结,则平面,因为平面,所以平面平面,故②正确;③平面,不可能存在点,使得平面,故③错误;④四棱锥的体积等于,设正方体的棱长为1.∵无论、在何点,三角形的面积为为定值,三棱锥的高,保持不变,三角形的面积为为定值,三棱锥的高为,保持不变.∴四棱锥的体积为定值,故④正确.故答案为①②④.【点睛】本题主要考查空间直线和平面平行或垂直的位置关系的判断,解答本题的关键正确利用分割法求空间几何体的体积的方法,综合性较强,难度较大.15、【解析】
取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,设点的坐标为,其中,利用数量积的坐标运算将转化为有关的一次函数的值域问题,可得出的取值范围.【详解】如下图所示:取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,则点、、,设点,其中,,,,因此,的取值范围是,故答案为.【点睛】本题考查平面向量数量积的取值范围,可以利用基底向量法以及坐标法求解,在建系时应充分利用对称性来建系,另外就是注意将动点所在的直线变为坐标轴,可简化运算,考查运算求解能力,属于中等题.16、【解析】
先将转化为,,然后求出即可【详解】因为所以所以所以所以把与互换可得即所以故答案为:【点睛】本题考查的是反函数的求法,较简单三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)1【解析】
(1)取中点,连接,即为所求角。在中,易得MC,NC的长,MN可在直角三角形中求得。再用余弦定理易求得夹角。(2)连接,连接和交于点,连接,易得,所以为的中位线,所以为中点,所以的值为1。【详解】(1)取中点,连接因为为矩形,分别为中点,所以所以异面直线与所成角就是与所成的锐角或直角因为平面平面,平面平面矩形中,,平面所以平面又平面,所以中,,所以又是圆周上点,且,所以中,,由余弦定理可求得所以异面直线与所成角的余弦值为(2)连接,连接和交于点,连接因为直线平面,直线平面,平面平面所以矩形的对角线交点为中点所以为的中位线,所以为中点又,所以的值为1【点睛】(1)异面直线所成夹角一般是要平移到一个平面。(2)通过几何关系确定未知点的位置,再求解线段长即可。18、(1),;(2),,;(3)乙班的总体学习情况比甲班好【解析】试题分析:每组样本数据有10个,求样本的平均数利用平均数公式,10个数的平均数等于这10个数的和除以10;比较平均分的大小可以看出两个班学生平均水平的高低,求样本的方差只需使用方差公式,求这10个数与平均数的差的平方方和再除以10;比较两组数据方差的大小就可得出两组数据的标准差的大小,标准差较小者成绩较稳定。试题解析:(1)=×(82+1+85+89+79+80+91+89+79+74)=83.2,=×(90+76+86+81+1+87+86+82+85+83)=1.(2)=×[(82-83.2)2+(1-83.2)2+(85-83.2)2+(89-83.2)2+(79-83.2)2+(80-83.2)2+(91-83.2)2+(89-83.2)2+(79-83.2)2+(74-83.2)2]=26.36,=[(90-1)2+(76-1)2+(86-1)2+(81-1)2+(1-1)2+(87-1)2+(86-1)2+(82-1)2+(85-1)2+(83-1)2]=13.2,则s甲=≈5.13,s乙=≈3.2.(3)由于,则甲班比乙班平均水平低.由于,则甲班没有乙班稳定.所以乙班的总体学习情况比甲班好【点睛】怎样求样本的平均数,n个数的平均数等于这n个数的和除以n;比较平均数的大小可以看出两个样本平均水平的高低,怎样求样本的方差,就是求这n个数与平均数的差的平方方和再除以n;比较两组数据方差的大小就可得出两组数据的标准差的大小,标准差较小者成绩较稳定。19、(1)证明见解析;(2)【解析】
(1)将已知条件凑配成,由此证得数列为等差数列.(2)由(1)求得数列的通项公式,进而求得的表达式,利用分组求和法求得.【详解】(1)证明:∵∴又∵∴所以数列是首项为1,公差为2的等差数列;(2)由(1)知,,所以.所以【点睛】本小题主要考查根据递推关系式证明等差数列,考查分组求和法,属于中档题.20、(1)1;(2).【解析】
(1)由二倍角公式可化函数为,结合正弦函数的性质可得;(2)先求得的增区间,其中,此区间应包含,这样可得之间的不等关系,利用>0,得的范围,从而得,最终可得的最大值.【详解】解法1:(1)因为图象的相邻两条对称轴的距离为,所以的最小正周期为,所以正数.(2)因为,所以由得单调递增区间为,其中.由题设,于是,得因为,所以,,因为,所以,所以,正数的最大值为.解法2:(1)同解法1.(2)当时,因为在单调递增,因为,所以于是,解得,故正数的最大值为.【点睛】本题考查二倍角公式,考查三角函数的性质.解题关键是化函数为一个角的一个三角函数形式,即形式,然后结合正弦函数的性质求解.21、(1)见解析(2)【解析】
(1)连结,交于点,连结,推导出,又,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州财经职业学院《视频传播实务》2023-2024学年第一学期期末试卷
- 贵阳职业技术学院《城乡规划管理与法规》2023-2024学年第一学期期末试卷
- 2025陕西建筑安全员-A证考试题库附答案
- 2025辽宁建筑安全员-A证考试题库附答案
- 2025浙江建筑安全员-C证(专职安全员)考试题库
- 贵阳康养职业大学《民俗与当代社会》2023-2024学年第一学期期末试卷
- 2025陕西省安全员A证考试题库附答案
- 2025甘肃省安全员B证(项目经理)考试题库
- 广州医科大学《建筑给排水》2023-2024学年第一学期期末试卷
- 广州现代信息工程职业技术学院《跨文化交际与面试技巧》2023-2024学年第一学期期末试卷
- 云上赏花直播方案
- 数控生涯发展展示
- 2024年太平洋人寿保险股份有限公司招聘笔试参考题库含答案解析
- 农业装备与机械化的经济效益与社会效益
- (完整)中医症候积分量表
- 医疗团队管理技巧与策略
- 《功能点计算方法》课件
- 工会提案培训课件
- 高空抛物法律知识讲座
- 射频工程师年终总结
- 2019统编版高中数学A版必修第二册教学计划含教学进度表(高一下学期数学教学计划)
评论
0/150
提交评论