版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则下列不等式中不正确的是()A. B. C. D.2.如图,为正三角形,,,则多面体的正视图(也称主视图)是A. B. C. D.3.要得到函数y=cos的图象,只需将函数y=cos2的图象()A.向左平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向右平移个单位长度4.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是()A.12 B.34 C.15.已知向量,,则()A. B. C. D.6.我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为A.分 B.分 C.分 D.分7.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是()A. B. C. D.8.不等式的解集为()A. B.C. D.9.若关于x的不等式x-1-x-2≥A.0,1 B.-1,0 C.-∞,-1∪0,10.若且则的值是().A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列满足(,为常数),则称数列为“调和数列”,已知正项数列为“调和数列”,且,则的最大值是__________.12.把二进制数1111(2)化为十进制数是______.13.函数的最小正周期为.14.已知数列满足,若,则数列的通项______.15.在行列式中,元素的代数余子式的值是________.16.三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等,BAA1=CAA1=60°则异面直线AB1与BC1所成角的余弦值为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.数列中,,.前项和满足.(1)求(用表示);(2)求证:数列是等比数列;(3)若,现按如下方法构造项数为的有穷数列,当时,;当时,.记数列的前项和,试问:是否能取整数?若能,请求出的取值集合:若不能,请说明理由.18.记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.19.已知点,圆.(1)求过点M的圆的切线方程;(2)若直线与圆相交于A,B两点,且弦AB的长为,求的值.20.已知的外接圆的半径为,内角,,的对边分别为,,,又向量,,且.(1)求角;(2)求三角形的面积的最大值并求此时的周长.21.等差数列中,,.(1)求通项公式;(2)若,求的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
,可得,则根据不等式的性质逐一分析选项,A:,,所以成立;B:,则,根据基本不等式以及等号成立的条件则可判断;C:且,根据可乘性可知结果;D:,根据乘方性可判断结果.【详解】A:由题意,不等式,可得,则,,所以成立,所以A是正确的;B:由,则,所以,因为,所以等号不成立,所以成立,所以B是正确的;C:由且,根据不等式的性质,可得,所以C不正确;D:由,可得,所以D是正确的,故选:C.【点睛】本题考查不等式的性质,不等式等号成立的条件,熟记不等式的性质是解题的关键,属于基础题.2、D【解析】
为三角形,,平面,
且,则多面体的正视图中,
必为虚线,排除B,C,
说明右侧高于左侧,排除A.,故选D.3、B【解析】∵,∴要得到函数的图像,只需将函数的图像向左平移个单位.选B.4、D【解析】
求出阴影部分的面积,然后与圆面积作比值即得.【详解】圆被8等分,其中阴影部分有3分,因此所求概率为P=3故选D.【点睛】本题考查几何概型,属于基础题.5、D【解析】
根据平面向量的数量积,计算模长即可.【详解】因为向量,,则,,故选:D.【点睛】本题考查了平面向量的数量积与模长公式的应用问题,是基础题.6、B【解析】
首先“冬至”时日影长度最大,为1350分,“夏至”时日影长度最小,为160分,即可求出,进而求出立春”时日影长度为.【详解】解:一年有二十四个节气,每相邻两个节气之间的日影长度差为分,且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分.,解得,“立春”时日影长度为:分.故选B.【点睛】本题考查等差数列的性质等基础知识,考查运算求解能力,利用等差数列的性质直接求解.7、D【解析】
先求出AB的长,再求点P到直线AB的最小距离和最大距离,即得△ABP面积的最小值和最大值,即得解.【详解】由题得,由题得圆心到直线AB的距离为,所以点P到直线AB的最小距离为2-1=1,最大距离为2+1=3,所以△ABP的面积的最小值为,最大值为.所以△ABP的面积的取值范围为[1,3].故选D【点睛】本题主要考查点到直线的距离的计算,考查面积的最值问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.8、B【解析】
把不等式左边的二次三项式因式分解后求出二次不等式对应方程的两根,结合二次函数的图象可得二次不等式的解集.【详解】由,得(x−1)(x+3)>0,解得x<−3或x>1.所以原不等式的解为,故选:B.【点睛】本题考查一元二次不等式的解法,求出二次方程的根结合二次函数的图象可得解集,属于基础题.9、D【解析】x-1-x-2=x-1-∵关于x的不等式x-1-∴a2+a-1>1,即解得a>1或∴实数a的取值范围为-∞,-2∪10、C【解析】由题设,又,则,所以,,应选答案C.点睛:角変换是三角变换中的精髓,也是等价化归与转化数学思想的具体运用,求解本题的关键是巧妙地将一个角变为已知两角的差,再运用三角变换公式进行求解.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】因为数列是“调和数列”,所以,即数列是等差数列,所以,,所以,,当且仅当时等号成立,因此的最大值为1.点睛:本题考查创新意识,关键是对新定义的理解与转化,由“调和数列”的定义及已知是“调和数列”,得数列是等差数列,从而利用等差数列的性质可化简已知数列的和,结合基本不等式求得最值.本题难度不大,但考查的知识较多,要熟练掌握各方面的知识与方法,才能正确求解.12、.【解析】
由二进制数的定义可将化为十进制数.【详解】由二进制数的定义可得,故答案为:.【点睛】本题考查二进制数化十进制数,考查二进制数的定义,考查计算能力,属于基础题.13、【解析】试题分析:,所以函数的周期等于考点:1.二倍角降幂公式;2.三角函数的周期.14、【解析】
直接利用数列的递推关系式和叠加法求出结果.【详解】因为,所以当时,.时也成立.所以数列的通项.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠加法在数列中的应用,主要考察学生的运算能力和转换能力,属于基础题.15、【解析】
根据余子式的定义,要求的代数余子式的值,这个元素在三阶行列式中的位置是第一行第二列,那么化去第一行第二列得到的代数余子式,解出即可.【详解】解:在行列式中,元素在第一行第二列,那么化去第一行第二列得到的代数余子式为:解这个余子式的值为,故元素的代数余子式的值是.故答案为:【点睛】考查学生会求行列式中元素的代数余子式,行列式的计算方法,属于基础题.16、【解析】
如图设设棱长为1,则,因为底面边长和侧棱长都相等,且所以,所以,,,设异面直线的夹角为,所以.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见详解.(3)能取整数,此时的取值集合为.【解析】
(1)利用递推关系式,令,通过,求出即可.(2)递推关系式转化为:,化简推出数列是等比数列.(3)由,求出,求出,得到通项公式,然后求解的分母与分子,讨论要使取整数,需为整数,推出的取值集合为时,取整数【详解】解:(1)令,则,将,代入,有.解得:.(2)由得,化简得,又,是等比数列.(3)由,,又是等比数列,,,①当时,依次为,.②当时,,,,要使取整数,需为整数,令,,,要么都为整数,要么都不是整数,又所以当且仅当为奇数时,为整数,即的取值集合为时,取整数.【点睛】本题主要考查利用递推公式结合,为判断等比数列,考查数列前项和的比的问题的转化与化归思想的综合性解题能力.18、(1)an=3n–4,(3)Sn=n3–8n,最小值为–1.【解析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(3)根据等差数列前n项和公式得的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{an}的公差为d,由题意得3a1+3d=–3.由a1=–7得d=3.所以{an}的通项公式为an=3n–4.(3)由(1)得Sn=n3–8n=(n–4)3–1.所以当n=4时,Sn取得最小值,最小值为–1.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.19、(1)或.(2)【解析】
(1)分切线的斜率不存在与存在两种情况分析.当斜率存在时设方程为,再根据圆心到直线的距离等于半径求解即可.(2)利用垂径定理根据圆心到直线的距离列出等式求解即可.【详解】解:(1)由题意知圆心的坐标为,半径,当过点M的直线的斜率不存在时,方程为.由圆心到直线的距离知,此时,直线与圆相切.当过点M的直线的斜率存在时,设方程为,即.由题意知,解得,∴方程为.故过点M的圆的切线方程为或.(2)∵圆心到直线的距离为,∴,解得.【点睛】本题主要考查了直线与圆相切与相交时的求解.注意直线过定点时分析斜率不存在与存在两种情况.直线与圆相切用圆心到直线的距离等于半径列式,直线与圆相交用垂径定理列式.属于中档题.20、(1).(2),周长为.【解析】
(1)由,利用坐标表示化简,结合余弦定理求角C(2)利用(1)中,应用正弦定理和基本不等式,即可求出面积的最大值,此时三角形为正三角即可求周长.【详解】(1)∵,∴,且,由正弦定理得:,化简得:.由余弦定理:,∴,∵,∴.(2)∵,∴(当且仅当时取“”),所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版八年级数学上册导学案
- 四年级数学下册教案
- 农业面源污染控制关键技术
- 利用风光互补特性的能量调度方案
- 苏教版小学数学六年级上册全册教案
- 2024高中化学第三章烃的含氧衍生物4有机合成课时作业含解析新人教版选修5
- 2024高中地理第四章工业地域的形成与发展第三节传统工业区与新工业区课时演练含解析新人教版必修2
- 2024高中生物第五章生态系统及其稳定性第1节生态系统的结构精练含解析新人教版必修3
- 2024高中语文第二单元置身诗境缘景明情菩萨蛮其二作业含解析新人教版选修中国古代诗歌散文欣赏
- 2024高考历史一轮复习方案专题六古代中国经济的基本结构与特点第15讲古代中国发达的农业和手工业教学案+练习人民版
- 影像检查诊断报告
- FMCW无线电高度表天线被部分遮挡下的影响分析及验证方法
- XX小学体育特色建设三年发展规划
- 高考专题复习:《史记 孙子吴起列传》分析
- 二级综合医院评审标准实施细则
- 新大《新疆地质概论》教案第6章 矿产资源
- EGD杀生剂剂化学品安全技术说明(MSDS)zj
- GB/T 12229-2005通用阀门碳素钢铸件技术条件
- 超分子化学-第三章 阴离子的络合主体
- 控制变量法教学课件
- 血压计保养记录表
评论
0/150
提交评论