北京八中2023年数学高一第二学期期末质量跟踪监视模拟试题含解析_第1页
北京八中2023年数学高一第二学期期末质量跟踪监视模拟试题含解析_第2页
北京八中2023年数学高一第二学期期末质量跟踪监视模拟试题含解析_第3页
北京八中2023年数学高一第二学期期末质量跟踪监视模拟试题含解析_第4页
北京八中2023年数学高一第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.以为圆心,且与两条直线,都相切的圆的标准方程为()A. B.C. D.2.记等差数列的前n项和为.若,则()A.7 B.8 C.9 D.103.已知满足:,则目标函数的最大值为()A.6 B.8 C.16 D.44.若,且为第四象限角,则的值等于A. B. C. D.5.已知,为直线,,为平面,下列命题正确的是()A.若,,则B.若,,则与为异面直线C.若,,,则D.若,,,则6.在区间上随机选取一个实数,则事件“”发生的概率是()A. B. C. D.7.已知等比数列{an}中,a3•a13=20,a6=4,则a10的值是()A.16 B.14 C.6 D.58.已知,,从射出的光线经过直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程可以用对称性转化为一条线段,这条线段的长为()A. B.3 C. D.9.圆与圆的位置关系是()A.相离 B.相交 C.相切 D.内含10.设为数列的前项和,,则的值为()A. B. C. D.不确定二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足:,,则使成立的的最大值为_______12.若是等比数列,,,且公比为整数,则______.13.在中,,点在边上,若,的面积为,则___________14.已知,且,则的取值范围是____________.15.已知三个事件A,B,C两两互斥且,则P(A∪B∪C)=__________.16.已知两点,则线段的垂直平分线的方程为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,.(1)若、、三点共线,求;(2)求的面积.18.如图,在三棱柱中,各个侧面均是边长为的正方形,为线段的中点.(1)求证:直线平面;(2)求直线与平面所成角的余弦值;(3)设为线段上任意一点,在内的平面区域(包括边界)是否存在点,使,并说明理由.19.已知,,与的夹角是(1)计算:①,②;(2)当为何值时,与垂直?20.已知.(1)当时,解不等式;(2)若,解关于x的不等式.21.已知数列为递增的等差数列,,且成等比数列.数列的前项和为,且满足.(1)求,的通项公式;(2)令,求的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由题意有,再求解即可.【详解】解:设圆的半径为,则,则,即圆的标准方程为,故选:C.【点睛】本题考查了点到直线的距离公式,重点考查了运算能力,属基础题.2、D【解析】

由可得值,可得可得答案.【详解】解:由,可得,所以,从而,故选D.【点睛】本题主要考察等差数列的性质及等差数列前n项的和,由得出的值是解题的关键.3、D【解析】

作出不等式组对应的平面区域,数形结合,利用z的几何意义,即得。【详解】由题得,不等式组对应的平面区域如图,中z表示函数在y轴的截距,由图易得,当函数经过点A时z取到最大值,A点坐标为,因此目标函数的最大值为4.故选:D【点睛】本题考查线性规划,是基础题。4、D【解析】试题分析:∵为第四象限角,,∴,.故选D.考点:同角间的三角函数关系.【点评】同角三角函数的基本关系式揭示了同一个角三角函数间的相互关系,其主要应用于同角三角函数的求值和同角三角函数之间的化简和证明.在应用这些关系式子的时候就要注意公式成立的前提是角对应的三角函数要有意义.5、D【解析】

利用空间中线线、线面、面面间的位置关系对选项逐一判断即可.【详解】由,为直线,,为平面,知:在A中,若,,则与相交、平行或异面,故A错误;在B中,若,,则与相交、平行或异面,故B错误;在C中,若,,,则与相交、平行或异面,故C错误;在D中,若,,,则由线面垂直、面面平行的性质定理得,故D正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于基础题.6、B【解析】

根据求出的范围,再由区间长度比即可得出结果.【详解】区间的长度为;由,解得,即,区间长度为,事件“”发生的概率是.故选B.【点睛】本题主要考查与长度有关的几何概型,熟记概率计算公式即可,属于基础题型.7、D【解析】

用等比数列的性质求解.【详解】∵是等比数列,∴,∴.故选D.【点睛】本题考查等比数列的性质,灵活运用等比数列的性质可以很快速地求解等比数列的问题.在等比数列中,正整数满足,则,特别地若,则.8、A【解析】

根据题意,画出示意图,求出点的坐标,进而利用两点之间距离公式求解.【详解】根据题意,作图如下:已知直线AB的方程为:,则:点P关于直线AB的对称点为,则:,解得点,同理可得点P关于直线OB的对称点为:故光线的路程为.故选:A.【点睛】本题考查点关于直线的对称点的求解、斜率的求解、以及两点之间的距离,属基础题.9、B【解析】

计算圆心距,判断与半径和差的关系得到位置关系.【详解】圆心距相交故答案选B【点睛】本题考查了两圆的位置关系,判断圆心距与半径和差的关系是解题的关键.10、C【解析】

令,由求出的值,再令时,由得出,两式相减可推出数列是等比数列,求出该数列的公比,再利用等比数列求和公式可求出的值.【详解】当时,,得;当时,由得出,两式相减得,可得.所以,数列是以为首项,以为公比的等比数列,因此,.故选:C.【点睛】本题考查利用前项和求数列通项,同时也考查了等比数列求和,在递推公式中涉及与时,可利用公式求解出,也可以转化为来求解,考查推理能力与计算能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】

从得到关于的通项公式后可得的通项公式,解不等式后可得使成立的的最大值.【详解】易知为等差数列,首项为,公差为1,∴,∴,令,∴,∴.故答案为:4【点睛】本题考查等差数列的通项的求法及数列不等式的解,属于容易题.12、512【解析】

由题设条件知和是方程的两个实数根,解方程并由公比q为整数,知,,由此能够求出公比,从而得到.【详解】是等比数列,

,,

,,

和是方程的两个实数根,

解方程,

得,,

公比q为整数,

,,

,解得,

.故答案为:512【点睛】本题考查等比数列的通项公式的求法,利用了等比数列下标和的性质,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.13、【解析】

由,的面积为可以求解出三角形,再通过,我们可以得出(两三角形等高)再利用正弦形式表示各自面积,即能得出的值.【详解】,的面积为,所以为等边三角形,又所以(等高),又所以填写2【点睛】已知三角形面积及一边一角,我们能把形成该角的另外一边算出,从而把三角形所有量都能计算出来(如果需要),求两角正弦值的比值,我们更多联想到正弦定理的公式,或面积公式.14、【解析】

利用正弦函数的定义域求得值域,即的范围,再根据反余弦函数的定义可求得的取值范围.【详解】因为且,所以,则根据反余弦函数的定义可得,则的取值范围是.故答案为:【点睛】本题考查了正弦函数的定义域和值域,考查了反余弦函数的定义,属于基础题.15、0.9【解析】

先计算,再计算【详解】故答案为0.9【点睛】本题考查了互斥事件的概率计算,属于基础题型.16、【解析】

求出直线的斜率和线段的中点,利用两直线垂直时斜率之积为可得出线段的垂直平分线的斜率,然后利用点斜式可写出中垂线的方程.【详解】线段的中点坐标为,直线的斜率为,所以,线段的垂直平分线的斜率为,其方程为,即.故答案为.【点睛】本题考查线段垂直平分线方程的求解,有如下两种方法求解:(1)求出中垂线的斜率和线段的中点,利用点斜式得出中垂线所在直线方程;(2)设动点坐标为,利用动点到线段两端点的距离相等列式求出动点的轨迹方程,即可作为中垂线所在直线的方程.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)根据题意,若、、三点共线,则表达和,根据向量共线定理的坐标表示,可求解参数值,即可求解模长.(2)根据题意,先求,,再求向量、的夹角,代入三角形面积公式,即可求解.【详解】解:(1)已知向量,,∴,,由点、、三点共线,得.解得.,(3)因为,,所以,,,,,【点睛】本题考查(1)向量共线的坐标表示;(2)三角形面积公式;考查计算能力,属于基础题.18、(1)见解析(2)(3)存在点,使,详见解析【解析】

(1)设与的交点为,证明进而证明直线平面.(2)先证明直线与平面所成角的为,再利用长度关系计算.(3)过点作,证明平面,即,所以存在.【详解】(1)设与的交点为,显然为中点,又点为线段的中点,所以,平面,平面,平面.(2)平面,平面,,,平面,平面,平面,点在平面上的投影为点,直线与平面所成角的为,,,,.(3)过点作,又因为平面,平面,所以,平面,平面,平面,,所以存在点,使.【点睛】本题考查了立体几何线面平行,线面夹角,动点问题,将线线垂直转化为线面垂直是解题的关键.19、(1)①;②;(2).【解析】

利用数量积的定义求解出的值;(1)将所求模长平方,从而得到关于模长和数量积的式子,代入求得模长的平方,再开平方得到结果;(2)向量互相垂直得到数量积等于零,由此建立方程,解方程求得结果.【详解】由已知得:(1)①②(2)若与垂直,则即:,解得:【点睛】本题考查利用数量积求解向量的模长、利用数量积与向量垂直的关系求解参数的问题.求解向量的模长关键是能够通过平方运算将问题转化为模长和数量积运算的形式,从而使问题得以求解.20、(1)或;(2)答案不唯一,具体见解析【解析】

(1)将代入,解对应的二次不等式可得答案;

(2)对值进行分类讨论,可得不同情况下不等式的解集.【详解】解:(1)当时,有不等式,,∴不等式的解集为或(2)∵不等式又当时,有,∴不等式的解集为;当时,有,∴不等式的解集为;当时,不等式的解集为.【点睛】本题考查的知识点是二次函数的性质,解二次不等式,难度中档.21、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论