版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4”;事件D:“击中环数大于0且小于4”,则正确的关系是A.A和B为对立事件 B.B和C为互斥事件C.C与D是对立事件 D.B与D为互斥事件2.《张丘建算经》中如下问题:“今有马行转迟,次日减半,疾五日,行四百六十五里,问日行几何?”根据此问题写出如下程序框图,若输出,则输入m的值为()A.240 B.220 C.280 D.2603.已知无穷等比数列的公比为,前项和为,且,下列条件中,使得恒成立的是()A., B.,C., D.,4.为了调查某工厂生产的一种产品的尺寸是否合格,现从500件产品中抽出10件进行检验,先将500件产品编号为000,001,002,…,499,在随机数表中任选一个数开始,例如选出第6行第8列的数4开始向右读取(为了便于说明,下面摘取了随机数表附表1的第6行至第8行),即第一个号码为439,则选出的第4个号码是()A.548 B.443 C.379 D.2175.某赛季中,甲、乙两名篮球队员各场比赛的得分茎叶图如图所示,若甲得分的众数为15,乙得分的中位数为13,则()A.15 B.16 C.17 D.186.下列函数中,是偶函数且在区间上是增函数的是()A. B.C. D.7.若直线:与直线:平行,则的值为()A.1 B.1或2 C.-2 D.1或-28.若,则()A. B. C. D.9.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机抽取了24名笔试者的成绩,统计结果如下表所示.分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90]人数234951据此估计允许参加面试的分数线大约是()A.90 B.85C.80 D.7510.如图,在中,,,若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足,则数列的前6项和为_______.12.已知,,则的值为.13.在长方体中,,,,如图,建立空间直角坐标系,则该长方体的中心的坐标为_________.14._________.15.若复数满足(为虚数单位),则__________.16.已知数列满足且,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别为,且.(1)求角的大小;(2)若,求的面积18.不等式(1)若不等式的解集为或,求的值(2)若不等式的解集为,求的取值范围19.已知等比数列的前n项和为,且,.(1)求数列的通项公式;(2)记,求的前n项和.20.如图,在中,点在边上,为的平分线,.(1)求;(2)若,,求.21.据说伟大的阿基米德逝世后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径、圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.(1)试计算出图案中球与圆柱的体积比;(2)假设球半径.试计算出图案中圆锥的体积和表面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据互斥事件和对立事件的概念,进行判定,即可求解,得到答案.【详解】由题意,A项中,事件“击中环数等于4环”可能发生,所以事件A和B为不是对立事件;B项中,事件B和C可能同时发生,所以事件B和C不是互斥事件;C项中,事件“击中环数等于0环”可能发生,所以事件C和D为不是对立事件;D项中,事件B:“击中环数大于4”与事件D:“击中环数大于0且小于4”,不可能同时发生,所以B与D为互斥事件,故选D.【点睛】本题主要考查了互斥事件和对立事件的概念及判定,其中解答中熟记互斥事件和对立事件的概念,准确判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2、A【解析】
根据程序框图,依次循环计算,可得输出的表达式.结合,由等比数列求和公式,即可求得的值.【详解】由程序框图可知,此时输出.所以即由等比数列前n项和公式可得解得故选:A【点睛】本题考查了循环结构程序框图的应用,等比数列求和的应用,属于中档题.3、B【解析】
由已知推导出,由此利用排除法能求出结果.【详解】,,,,,若,则,故A与C不可能成立;若,则,故B成立,D不成立.故选:B【点睛】本题考查了等比数列的前项和公式以及排除法在选择题中的应用,属于中档题.4、D【解析】
利用随机数表写出每一个数字即得解.【详解】第一个号码为439,第二个号码为495,第三个号码为443,第四个号码为217.故选:D【点睛】本题主要考查随机数表,意在考查学生对该知识的理解掌握水平.5、A【解析】
由图可得出,然后可算出答案【详解】因为甲得分的众数为15,所以由茎叶图可知乙得分数据有7个,乙得分的中位数为13,所以所以故选:A【点睛】本题考查的是茎叶图的知识,较简单6、A【解析】
逐一分析选项,得到答案.【详解】A.是偶函数,并且在区间时增函数,满足条件;B.不是偶函数,并且在上是减函数,不满足条件;C.是奇函数,并且在区间上时减函数,不满足条件;D.是偶函数,在区间上是减函数,不满足条件;故选A.【点睛】本题考查了函数的基本性质,属于基础题型.7、A【解析】试题分析:因为直线:与直线:平行,所以或-2,又时两直线重合,所以.考点:两条直线平行的条件.点评:此题是易错题,容易选C,其原因是忽略了两条直线重合的验证.8、C【解析】
由及即可得解.【详解】由,可得.故选C.【点睛】本题主要考查了同角三角函数的基本关系及二倍角公式,属于基础题.9、C【解析】
根据题意可从样本中数据的频率考虑,即按成绩择优选择频率为的,根据题意得到所选的范围后再求出对应的分数.【详解】由题意得,参加面试的频率为,结合表中的数据可得,样本中[80,90]的频率为,由样本估计总体知,分数线大约为80分.故选C.【点睛】本题考查统计图表的应用,解题的关键是理解题意,同时还要正确掌握统计中的常用公式,属于基础题.10、B【解析】∵∴又,∴故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、84【解析】
根据分组求和法以及等差数列与等比数列前n项和公式求解.【详解】因为,所以.【点睛】本题考查分组求和法以及等差数列与等比数列前n项和公式,考查基本分析求解能力,属基础题.12、3【解析】
,故答案为3.13、【解析】
先求出点B的坐标,再求出M的坐标.【详解】由题得B(4,6,0),,因为M点是中点,所以点M坐标为.故答案为【点睛】本题主要考查空间坐标的求法,意在考查学生对该知识的理解掌握水平,属于基础题.14、【解析】
根据诱导公式和特殊角的三角函数值可计算出结果.【详解】由题意可得,原式.故答案为.【点睛】本题考查诱导公式和特殊三角函数值的计算,考查计算能力,属于基础题.15、【解析】分析:由复数的除法运算可得解.详解:由,得.故答案为:.点睛:本题考查了复数的除法运算,属于基础题.16、【解析】
由题得为等差数列,得,则可求【详解】由题:为等差数列且首项为2,则,所以.故答案为:2550【点睛】本题考查等差数列的定义,准确计算是关键,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)根据正弦定理把题设等式中的边换成相应角的正弦,化简整理可求得,进而求得;(2)根据余弦定理得,结合求得的值,进而由三角形的面积公式求得面积.【详解】(1)根据正弦定理,又,.(2)由余弦定理得:,代入得,故面积为【点睛】本题主要考查正弦定理、余弦定理及特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.18、(1);(2)【解析】
(1)根据一元二次不等式的解和对应一元二次方程根的关系,求得的值.(2)利用一元二次不等式解集为的条件列不等式组,解不等式组求得的取值范围.【详解】(1)由于不等式的解集为或,所以,解得.(2)由于不等式的解集为,故,解得.故的取值范围是.【点睛】本小题主要考查一元二次不等式的解与对应一元二次方程根的关系,考查一元二次不等式恒成立问题的求解策略,属于基础题.19、(1)(2)【解析】
(1)直接利用等比数列公式计算得到答案.(2),,利用错位相减法计算得到答案.【详解】(1)设等比数列的首项为,公比为,显然.,.两式联立得:,,.(2),所以.则,①,②,①-②得:.所以.【点睛】本题考查了等比数列通项公式,错位相减法,意在考查学生对于数列公式方法的灵活运用.20、(1)(2)【解析】
(1)令,正弦定理,得,代入面积公式计算得到答案.(2)由题意得到,化简得到,,再利用面积公式得到答案.【详解】(1)因为的平分线,令在中,,由正弦定理,得所以.(2)因为,所以,又由,得,,因为,所以所以.【点睛】本题考查了面积的计算,意在考查学生灵活利用正余弦定理和面积公式解决问题的能力.21、(1);(2)圆锥体积,表面积【解析】
(1)由球的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 820字借款协议书范本
- 工程资料买卖合同范本
- 毛坯房装修半包合同模板
- 商品房购买合同(适用于商品房预售、销售)
- 劳务承包合同范本
- 2024年专业委托管理合同模板
- 家政工服务协议书样本
- 投标授权书合同书
- 职员股权激励协议文本
- 新的公租房买卖合同范本
- 2023年陕煤集团招聘笔试题库及答案解析
- GB/T 11376-2020金属及其他无机覆盖层金属的磷化膜
- 高二上学期化学人教版(2019)选择性必修1实验计划
- 六年级下册音乐教案第六单元《毕业歌》人教新课标
- 世界咖啡介绍 PPT
- 中医药膳学全套课件
- 马王堆出土文物艺术欣赏-课件
- 初中语文人教六年级下册《专题阅读:概括主要事件》PPT
- 13、停电停水等突发事件的应急预案以及消防制度
- DB42T1811-2022西瓜设施育苗技术规程
- 早教托育园招商加盟商业计划书
评论
0/150
提交评论