版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
最新北师大版八年级数学下册单元测试题全套及答案《第1章三角形的证明》一、选择题1.满足下列条件的三角形不一定是直角三角形的是()A.三条边的比为5:12:13B.三个角的度数比为2:3:5C.有一边等于另一条边的一半D.三角形的三边长分别是24、25和72.已知下列命题:①若a≤0,则|a|=﹣a;②若ma2>na2,则m>n;③两组对角分别相等的四边形是平行四边形;④垂直于弦的直径平分弦.其中原命题与逆命题均为真命题的个数是()A.1个 B.2个 C.3个 D.4个3.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m4.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A. B. C. D.5.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN长是()A.3cm B.4cm C.5cm D.6cm二、填空题6.如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE=.7.下列命题中,其逆命题成立的是.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.8.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.9.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为cm.10.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.三、解答题11.如图,BC=4cm,AB=3cm,AF=12cm,AC⊥AF,正方形CDEF的面积是169cm2,试判断△ABC的形状?12.如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.13.在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边分别为6、8、9时,△ABC为三角形;当△ABC三边分别为6、8、11时,△ABC为三角形.(2)猜想,当a2+b2c2时,△ABC为锐角三角形;当a2+b2c2时,(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.《第1章三角形的证明》参考答案与试题解析一、选择题1.满足下列条件的三角形不一定是直角三角形的是()A.三条边的比为5:12:13B.三个角的度数比为2:3:5C.有一边等于另一条边的一半D.三角形的三边长分别是24、25和7【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形的内角和定理及勾股定理的逆定理进行分析,从而得到答案.【解答】解:A、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;B、因为根据三角形内角和定理可求出三个角分别为36度,54度,90度,所以是直角三角形,故正确;C、因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确;D、因为其符合勾股定理的逆定理,所以是直角三角形,故正确;故选D.【点评】题考查了直角三角形的判定:可用勾股定理的逆定理或三角形的内角和定理来判定.2.已知下列命题:①若a≤0,则|a|=﹣a;②若ma2>na2,则m>n;③两组对角分别相等的四边形是平行四边形;④垂直于弦的直径平分弦.其中原命题与逆命题均为真命题的个数是()A.1个 B.2个 C.3个 D.4个【考点】命题与定理.【分析】先对每一命题进行判断,再写出每一命题的逆命题,然后判断出真假,即可得出原命题与逆命题均为真命题的个数.【解答】解:①若a≤0,则|a|=﹣a是真命题,逆命题为若|a|=﹣a,则a≤0是真命题,②若ma2>na2,则m>n是真命题,逆命题为若m>n,则ma2>na2是假命题,③两组对角分别相等的四边形是平行四边形是真命题,逆命题为平行四边形的两组对角分别相等是真命题,④垂直于弦的直径平分弦是真命题,逆命题为平分弦的直径垂直于弦是假命题,所以原命题与逆命题均为真命题的个数是2个.故选:B.【点评】本题考查了命题与定理;主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,关键是要熟悉有关的性质定理.3.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A.12m B.13m C.16m D.17m【考点】勾股定理的应用.【专题】应用题.【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选:D.【点评】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.4.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A. B. C. D.【考点】勾股定理;点到直线的距离;三角形的面积.【专题】计算题.【分析】根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选A【点评】此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.5.如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN长是()A.3cm B.4cm C.5cm D.6cm【考点】勾股定理;翻折变换(折叠问题).【专题】压轴题.【分析】根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8﹣x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.【解答】解:设CN=xcm,则DN=(8﹣x)cm,由折叠的性质知EN=DN=(8﹣x)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8﹣x)2=16+x2,整理得16x=48,所以x=3.故选A.【点评】折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.二、填空题6.如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE=3.【考点】勾股定理;全等三角形的判定与性质;等腰三角形的性质.【分析】根据等腰三角形的性质可知:两腰上的高相等所以AD=BE=4,再利用勾股定理即可求出AE的长.【解答】解:∵在△ABC中,CA=CB,AD⊥BC,BE⊥AC,∴AD=BE=4,∵AB=5,∴AE==3,故答案为:3.【点评】本题考查了等腰三角形的性质以及勾股定理的运用,题目比较简单.7.下列命题中,其逆命题成立的是①④.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.【考点】命题与定理;实数的运算;角的概念;平行线的判定与性质;勾股定理;勾股定理的逆定理.【专题】推理填空题.【分析】把一个命题的条件和结论互换就得到它的逆命题,再分析逆命题是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①两直线平行,同旁内角互补,正确;②如果两个角相等,那么它们是直角,错误;③如果两个实数的平方相等,那么这两个实数相等,错误;④如果一个三角形是直角三角形,c为斜边,则a2+b2=c2,正确.故答案为①④.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,难度适中.8.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2.【考点】翻折变换(折叠问题);勾股定理.【专题】计算题.【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,在Rt△ADC′中利用勾股定理得(8﹣x)2=x2+42,解得x=3,然后根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm,∴AC′=AB﹣BC′=4cm,设DC=xcm,则AD=(8﹣x)cm,在Rt△ADC′中,AD2=AC′2+C′D2,即(8﹣x)2=x2+42,解得x=3,∵∠AC′D=90°,∴△ADC′的面积═×AC′×C′D=×4×3=6(cm2).故答案为6cm2.【点评】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等,对应点的连线段被折痕垂直平分.也考查了勾股定理.9.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为5SHAPEcm.【考点】平面展开﹣最短路径问题.【专题】压轴题;探究型.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′C的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′C,则A′C即为最短距离,A′C====5SHAPEcm.故答案为:5.【点评】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.10.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=135度.【考点】勾股定理的逆定理;正方形的性质;旋转的性质.【专题】压轴题.【分析】首先根据旋转的性质得出,△EBE′是直角三角形,进而得出∠BEE′=∠BE′E=45°,即可得出答案.【解答】解:连接EE′∵△ABE绕点B顺时针旋转90°到△CBE′∴∠EBE′是直角,∴△EBE′是直角三角形,∵△ABE与△CE′B全等∴BE=BE′=2,∠AEB=∠BE′C∴∠BEE′=∠BE′E=45°,∵EE′2=22+22=8,AE=CE′=1,EC=3,∴EC2=E′C2+EE′2,∴△EE′C是直角三角形,∴∠EE′C=90°,∴∠AEB=135°.故答案为:135.【点评】此题主要考查了旋转的性质,根据已知得出△EBE′是直角三角形是解题关键.三、解答题11.如图,BC=4cm,AB=3cm,AF=12cm,AC⊥AF,正方形CDEF的面积是169cm2,试判断△ABC的形状?【考点】勾股定理的应用;勾股定理的逆定理;正方形的性质.【分析】首先根据正方形的面积求出FC的长,再在Rt△ACF中利用勾股定理求出AC的长,然后根据勾股定理逆定理证明∠B=90°即可.【解答】解:∵正方形CDEF的面积是169cm2,∴FC=13cm…(1分),在Rt△ACF中,由勾股定理得,AC2=CF2﹣AF2=132﹣122=25,…(3分)在△ABC中,因为AB2+BC2=32+42=25=AC2…(4分)由勾股定理的逆定理得:△ABC是直角三角形.…(5分)【点评】此题主要考查了正方形的性质,勾股定理以及勾股定理的逆定理的运用,关键是求出AC得出长.12.如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】计算题;证明题.【分析】(1)因为∠AOB=∠COD=90°,由等量代换可得∠DOB=∠AOC,又因为△AOB和△COD均为等腰直角三角形,所以OC=OD,OA=OB,则△AOC≌△BOD;(2)由(1)可知△AOC≌△BOD,所以AC=BD=2,∠CAO=∠DBO=45°,由等量代换求得∠CAB=90°,则CD=.【解答】(1)证明:∵∠DOB=90°﹣∠AOD,∠AOC=90°﹣∠AOD,∴∠BOD=∠AOC,又∵OC=OD,OA=OB,在△AOC和△BOD中,∴△AOC≌△BOD(SAS);(2)解:∵△AOC≌△BOD,∴AC=BD=2,∠CAO=∠DBO=45°,∴∠CAB=∠CAO+∠BAO=90°,∴CD===.【点评】此题为全等三角形判定的综合题.考查学生综合运用数学知识的能力.13.在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边分别为6、8、9时,△ABC为锐角三角形;当△ABC三边分别为6、8、11时,△ABC为钝角三角形.(2)猜想,当a2+b2>c2时,△ABC为锐角三角形;当a2+b2<c2时,△ABC为钝角三角形.(3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.【考点】勾股定理的逆定理;勾股定理.【专题】压轴题.【分析】(1)利用勾股定理列式求出两直角边为6、8时的斜边的值,然后作出判断即可;(2)根据(1)中的计算作出判断即可;(3)根据三角形的任意两边之和大于第三边求出最长边c点的最大值,然后得到c的取值范围,然后分情况讨论即可得解.【解答】解:(1)两直角边分别为6、8时,斜边==10,∴△ABC三边分别为6、8、9时,△ABC为锐角三角形;当△ABC三边分别为6、8、11时,△ABC为钝角三角形;故答案为:锐角;钝角;(2)当a2+b2>c2时,△ABC为锐角三角形;当a2+b2<c2时,△ABC为钝角三角形;故答案为:>;<;(3)∵c为最长边,2+4=6,∴4≤c<6,a2+b2=22+42=20,①a2+b2>c2,即c2<20,0<c<2,∴当4≤c<2时,这个三角形是锐角三角形;②a2+b2=c2,即c2=20,c=2,∴当c=2时,这个三角形是直角三角形;③a2+b2<c2,即c2>20,c>2,∴当2<c<6时,这个三角形是钝角三角形.【点评】本题考查了勾股定理,勾股定理逆定理,读懂题目信息,理解三角形为锐角三角形、直角三角形、钝角三角形时的三条边的数量关系是解题的关键.《第2章一元一次不等式与一元一次不等式组》一、选择题1.小明身高1.5米,小明爸爸身高1.8米,小明走上一处每级高a米,共10级的平台说:“爸爸,现在两个你的身高都比不上我了!”由此可得关于a的不等式是()A.1Oa>1.8×2 B.1.5+a+10>1.8×2C.10a+1.5>1.8×2 D.1.8×2>10a+152.小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.3(2x﹣100)<1000,则下列何者可能是小美告诉小明的内容?()A.买两件等值的商品可减100元,再打3折,最后不到1000元B.买两件等值的商品可减100元,再打7折,最后不到1000元C.买两件等值的商品可打3折,再减100元,最后不到1000元D.买两件等值的商品可打7折,再减100元,最后不到1000元3.西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A.至少20户 B.至多20户 C.至少21户 D.至多21户4.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要()A.12120元 B.12140元 C.12160元 D.12200元5.某商人从批发市场买了20千克肉,每千克a元,又从肉店买了10千克肉,每千克b元,最后他又以元的单价把肉全部卖掉,结果赔了钱,原因是()A.a>b B.a<bC.a=b D.与a和b的大小无关二、填空题6.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n道题,则根据题意可列不等式.7.有3人携带会议材料乘坐电梯,这3人的体重共210kg.毎梱材料重20kg.电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多能搭载捆材枓.8.某商场推出一种购物“金卡”,凭卡在该商场购物可按商品价格的八折优惠,但办理金卡时每张要收100元购卡费,设按标价累计购物金额为x(元),当x>时,办理金卡购物省钱.三、解答题9.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元);累计购物实际花费130290…x在甲商场127…在乙商场126…(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?10.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.11.为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?12.小杰到学校食堂买饭,看到A、B两窗口前面排队的人一样多(设为a人,a>8),就站在A窗口队伍的后面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.(1)此时,若小杰继续在A窗口排队,则他到达窗口所花的时间是多少?(用含a的代数式表示)(2)此时,若小杰迅速从A窗口队伍转移到B窗口后面重新排队,且到达B窗口所花的时间比继续在A窗口排队到达A窗口所花的时间少,求a的取值范围.(不考虑其它因素)13.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000m3海水,淡化率为70%.每淡化1m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m
《第2章一元一次不等式与一元一次不等式组》参考答案与试题解析一、选择题1.小明身高1.5米,小明爸爸身高1.8米,小明走上一处每级高a米,共10级的平台说:“爸爸,现在两个你的身高都比不上我了!”由此可得关于a的不等式是()A.1Oa>1.8×2 B.1.5+a+10>1.8×2C.10a+1.5>1.8×2 D.1.8×2>10a+15【考点】由实际问题抽象出一元一次不等式.【分析】根据小明的身高+10级高台的高度>爸爸身高的2倍列式即可.【解答】解:根据题意,得10a+1.5>1.8×2.故选:C.【点评】本题考查了由实际问题抽象出一元一次不等式.读懂题意,抓住关键词语,才能把文字语言的不等关系转化为用数学符号表示的不等式.2.小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.3(2x﹣100)<1000,则下列何者可能是小美告诉小明的内容?()A.买两件等值的商品可减100元,再打3折,最后不到1000元B.买两件等值的商品可减100元,再打7折,最后不到1000元C.买两件等值的商品可打3折,再减100元,最后不到1000元D.买两件等值的商品可打7折,再减100元,最后不到1000元【考点】一元一次不等式的应用.【分析】根据0.3(2x﹣100)<1000,可以理解为买两件减100元,再打3折得出总价小于1000元.【解答】解:由关系式可知:0.3(2x﹣100)<1000,由2x﹣100,得出两件商品减100元,以及由0.3(2x﹣100)得出买两件打3折,故可以理解为:买两件等值的商品可减100元,再打3折,最后不到1000元.故选:A.【点评】此题主要考查了由不等式联系实际问题,根据已知得出最后打3折是解题关键.3.西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A.至少20户 B.至多20户 C.至少21户 D.至多21户【考点】一元一次不等式的应用.【专题】应用题;压轴题.【分析】根据“x户居民按1000元计算总费用>整体初装费+500x”列不等式求解即可.【解答】解:设这个小区的住户数为x户.则1000x>10000+500x,解得x>20.∵x是整数,∴这个小区的住户数至少21户.故选C.【点评】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等关系式即可求解.注意本题中的住户数是整数,所以在x>20的情况下,至少取21.4.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要()A.12120元 B.12140元 C.12160元 D.12200元【考点】一元一次不等式的应用.【专题】优选方案问题;压轴题.【分析】设票价为60元的票数为x张,票价为100元的票数为y张,根据题意可列出,当购买的60元的票越多,花钱就越少,从而可求解.【解答】解:设票价为60元的票数为x张,票价为100元的票数为y张,故可得:x≤由题意可知:x,y为正整数,故x=46,y=94,∴购买这两种票最少需要60×46+100×94=12160.故选C.【点评】本题考查一元一次不等式组的应用,读懂题意列出不等式关系式,本题关键是要知道当购买的60元的票越多,花钱就越少即可求解.5.某商人从批发市场买了20千克肉,每千克a元,又从肉店买了10千克肉,每千克b元,最后他又以元的单价把肉全部卖掉,结果赔了钱,原因是()A.a>b B.a<bC.a=b D.与a和b的大小无关【考点】整式的加减;不等式的性质.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:(20a+10b)÷30﹣=a+b﹣a﹣b=a﹣b=(a﹣b),当a>b,即a﹣b>0时,结果赔钱,故选A【点评】此题考查了整式的加减,以及不等式的性质,弄清题意是解本题的关键.二、填空题6.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n道题,则根据题意可列不等式10n﹣5(20﹣n)>90.【考点】由实际问题抽象出一元一次不等式.【分析】根据答对题的得分:10n;答错题的得分:﹣5(20﹣n),得出不等关系:得分要超过90分.【解答】解:根据题意,得10n﹣5(20﹣n)>90.故答案为:10n﹣5(20﹣n)>90.【点评】此题主要考查了由实际问题抽象出一元一次不等式,要特别注意:答错或不答都扣5分,至少即大于或等于.7.有3人携带会议材料乘坐电梯,这3人的体重共210kg.毎梱材料重20kg.电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多能搭载42捆材枓.【考点】一元一次不等式的应用.【专题】应用题.【分析】可设还能搭载x捆材枓,根据电梯最大负荷为1050kg,列出不等式求解即可.【解答】解:设还能搭载x捆材枓,依题意得:20x+210≤1050,解得:x≤42.故该电梯在此3人乘坐的情况下最多能搭载42捆材枓.故答案为:42.【点评】本题考查了一元一次不等式的应用,解题的关键是理解电梯最大负荷的含义.8.某商场推出一种购物“金卡”,凭卡在该商场购物可按商品价格的八折优惠,但办理金卡时每张要收100元购卡费,设按标价累计购物金额为x(元),当x>500时,办理金卡购物省钱.【考点】一元一次不等式的应用.【专题】压轴题.【分析】关键描述语:办理金卡购物省钱,即未打折的购物金额减去打折后的购物金额应大于100元的购卡费,列出不等式求解即可.【解答】解:依题意得:x﹣0.8x>100,解得:x>500即当购物金额大于500元时,办理金卡购物省钱.【点评】解决问题的关键是读懂题意,找到关键描述语,理解:办理金卡购物省钱,这一句中包含的不等关系.三、解答题9.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元);累计购物实际花费130290…x在甲商场127271…0.9x+10在乙商场126278…0.95x+2.5(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?【考点】一元一次不等式的应用;一元一次方程的应用.【分析】(1)根据已知得出甲商场100+(290﹣100)×0.9以及50+(290﹣50)×0.95进而得出答案,同理可得出在乙商场累计购物290元、x元的实际花费;(2)根据题中已知条件,求出0.95x+2.5,0.9x+10相等,从而得出正确结论;(3)根据0.95x+2.5与0.9x+10相比较,从而得出正确结论.【解答】解:(1)在甲商场:100+(290﹣100)×0.9=271,100+(x﹣100)×0.9=0.9x+10;在乙商场:50+(290﹣50)×0.95=278,50+(x﹣50)×0.95=0.95x+2.5;(2)根据题意得出:0.9x+10=0.95x+2.5,解得:x=150,答:当x为150时,小红在甲、乙两商场的实际花费相同;(3)由0.9x+10<0.95x+2.5,解得:x>150,0.9x+10>0.95x+2.5,解得:x<150,∴当小红累计购物大于150时,选择甲商场实际花费少;当累计购物正好为150元时,两商场花费相同;当小红累计购物超过100元而不到150元时,在乙商场实际花费少.答:当小红累计购物超过100元而不到150元时,在乙商场实际花费少;正好为150元时,两商场花费相同;大于150时,选择甲商场实际花费少.【点评】此题主要考查了一元一次不等式的应用和一元一次方程的应用,此题问题较多且不是很简单,有一定难度.涉及方案选择时应与方程或不等式联系起来.10.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)根据“‘益安’车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石”分别得出等式组成方程组,求出即可;(2)利用“‘益安’车队需要一次运输沙石165吨以上”得出不等式求出购买方案即可.【解答】解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x辆、y辆,根据题意得:,解之得:.答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;(2)设载重量为8吨的卡车增加了z辆,依题意得:8(5+z)+10(7+6﹣z)>165,解之得:z<,∵z≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.【点评】此题主要考查了二元一次方程组的应用以及不等式的应用,根据已知得出正确的不等式关系是解题关键.11.为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?【考点】一元一次不等式的应用;一元一次方程的应用.【专题】压轴题.【分析】(1)利用已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,即可求出乙、丙两种树每棵钱数;(2)假设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000﹣3x)棵,利用(1)中所求树木价格以及现计划用210000元资金购买这三种树共1000棵,得出等式方程,求出即可;(3)假设购买丙种树y棵,则甲、乙两种树共(1000﹣y)棵,根据题意得:200(1000﹣y)+300y≤210000+10120,求出即可.【解答】解:(1)已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,则乙种树每棵200元,丙种树每棵×200=300(元);(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000﹣3x)棵.根据题意:200×2x+200x+300(1000﹣3x)=210000,解得x=300∴2x=600,1000﹣3x=100,答:能购买甲种树600棵,乙种树300棵,丙种树100棵;(3)设购买丙种树y棵,则甲、乙两种树共(1000﹣y)棵,根据题意得:200(1000﹣y)+300y≤210000+10120,解得:y≤201.2,∵y为正整数,∴y最大取201.答:丙种树最多可以购买201棵.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.本题难点是(3)中总钱数变化,购买总棵树不变的情况下得出不等式方程.12.小杰到学校食堂买饭,看到A、B两窗口前面排队的人一样多(设为a人,a>8),就站在A窗口队伍的后面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.(1)此时,若小杰继续在A窗口排队,则他到达窗口所花的时间是多少?(用含a的代数式表示)(2)此时,若小杰迅速从A窗口队伍转移到B窗口后面重新排队,且到达B窗口所花的时间比继续在A窗口排队到达A窗口所花的时间少,求a的取值范围.(不考虑其它因素)【考点】一元一次不等式的应用.【专题】应用题.【分析】(1)根据题意直接列式即可;(2)根据“达B窗口所花的时间比继续在A窗口排队到达A窗口所花的时间少”列不等式得求解即可.【解答】解:(1)他继续在A窗口排队到达窗口所花的时间为,即为(分).(2)由题意,得,整理得:3a﹣24>2a﹣4,解得a>20.∴a的取值范围为a>20.【点评】考查正确列代数式、不等式解决问题的能力.本题主要考查不等式知识,考查学生的应用能力,试题与实际生活的关系较紧密,有一定的能力要求.13.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000m3海水,淡化率为70%.每淡化1m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m【考点】一元一次不等式的应用;一元一次方程的应用;二元一次方程组的应用.【专题】应用题;压轴题.【分析】(1)设年降水量为x万m3,每人年平均用水量为ym3,根据题意等量关系可得出方程组,解出即可;(2)设该镇人均每年用水量为zm3水才能实现目标,由等量关系得出方程,解出即可;(3)该企业n年后能收回成本,根据投入1000万元设备,可得出不等式,解出即可.【解答】解:(1)设年降水量为x万m3,每人年平均用水量为ym3,由题意得,解得:.答:年降水量为200万m3,每人年平均用水量为50m3(2)设该镇居民人均每年用水量为zm3水才能实现目标,由题意得,12000+25×200=20×25z,解得:z=34,50﹣34=16m3答:该镇居民人均每年需节约16m3(3)该企业n年后能收回成本,由题意得,[3.2×5000×70%﹣(1.5﹣0.3)×5000]×300n﹣400000n≥10000000,解得:n≥8.答:至少9年后企业能收回成本.【点评】本题考查了一元一次不等式、二元一次方程组的应用,解答本题的关键是仔细审题,得到等量关系与不等关系,难度一般.《第3章图形的平移与旋转》一、选择题1.下列说法正确的是()A.一个图形平移后,它各点的横、纵坐标都发生变化B.一个图形平移后,它的大小发生变化,形状不变C.把一个图形沿y轴平移若干个单位长度后,与原图形相比各点的横坐标没有发生变化D.图形平移后,一些点的坐标可以不发生变化2.把点A(﹣2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是()A.(﹣5,3) B.(1,3) C.(1,﹣3) D.(﹣5,﹣1)3.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A.先把△ABC向左平移5个单位,再向下平移2个单位B.先把△ABC向右平移5个单位,再向下平移2个单位C.先把△ABC向左平移5个单位,再向上平移2个单位D.先把△ABC向右平移5个单位,再向上平移2个单位4.已知三角形的三个顶点坐标分别是A(﹣2,﹣1),B(1,﹣2),C(0,2).若将△ABC先向右平移2个单位,再向上平移3个单位长度,则所得三角形的三个顶点的坐标分别为()A.(﹣4,2),(﹣1,1),(﹣2,5) B.(0,2),(3,1),(2,5)C.(﹣4,5),(﹣1,4),(﹣2,8) D.(1,1),(4,0),(3,4)5.已知:如图△ABC的顶点坐标分别为A(﹣4,﹣3),B(0,﹣3),C(﹣2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2A.S1>S2 B.S1=S2 C.S1<S26.如图,把图中的⊙A经过平移得到⊙O(如图),如果左图中⊙A上一点P的坐标为(m,n),那么平移后在右图中的对应点P′的坐标为()A.(m+2,n+1) B.(m﹣2,n﹣1) C.(m﹣2,n+1) D.(m+2,n﹣1)7.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5二、解答题8.点(3,﹣2)先向右平移2个单位,再向上平移4个单位,所得的点关于以y轴为对称点的坐标为.9.如图,一群大雁成人字形向南飞去,分别写出它们的坐标,30秒后,领头大雁飞到A′位置,其他大雁B、C、D、E、F、G飞到什么位置?分别写出这6只大雁的新位置的坐标,并计算出AA′的长度.10.如图①,三角形ABC经平移后点A的对应点是点A′,请你在图②中作出平移后所得到的三角形A′B′C′,并计算平移的距离.11.如图,△ABC中,任意一点P(a,b)经平移后对应点P1(a﹣2,b+3),将△ABC作同样的平移得到△A1B1C1(1)求A1,B1,C1的坐标;(2)指出这一平移的平移方向和平移距离.12.在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的像△A′B′C′(不写画法),并直接写出点B′、C′的坐标:B′、C′;(2)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是.13.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是;(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推测An的坐标是,Bn的坐标是.
《第3章图形的平移与旋转》参考答案与试题解析一、选择题1.下列说法正确的是()A.一个图形平移后,它各点的横、纵坐标都发生变化B.一个图形平移后,它的大小发生变化,形状不变C.把一个图形沿y轴平移若干个单位长度后,与原图形相比各点的横坐标没有发生变化D.图形平移后,一些点的坐标可以不发生变化【考点】平移的性质.【分析】利用平移的性质逐一判断后即可得到结论.【解答】解:A、一个图形平移后有时候横坐标不变,有时候纵坐标不变,故错误;B、一个图形平移后其大小形状均不变,故错误;C、正确;D、图形平移后,一些点的坐标必然会发生变化,故选C.【点评】本题考查了图形平移的性质,图形平移后与原图形全等.2.把点A(﹣2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是()A.(﹣5,3) B.(1,3) C.(1,﹣3) D.(﹣5,﹣1)【考点】坐标与图形变化﹣平移.【专题】应用题.【分析】根据平移的基本性质,向上平移a,纵坐标加a,向右平移a,横坐标加a;【解答】解:∵A(﹣2,1)向上平移2个单位,再向右平移3个单位后得到B,∴1+2=3,﹣2+3=1;点B的坐标是(1,3).故选B.【点评】本题考查了平移的性质,①向右平移a个单位,坐标P(x,y)⇒P(x+a,y),①向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),①向上平移b个单位,坐标P(x,y)⇒P(x,y+b),①向下平移b个单位,坐标P(x,y)⇒P(x,y﹣b).3.如图,在10×6的网格中,每个小方格的边长都是1个单位,将△ABC平移到△DEF的位置,下面正确的平移步骤是()A.先把△ABC向左平移5个单位,再向下平移2个单位B.先把△ABC向右平移5个单位,再向下平移2个单位C.先把△ABC向左平移5个单位,再向上平移2个单位D.先把△ABC向右平移5个单位,再向上平移2个单位【考点】生活中的平移现象.【专题】网格型.【分析】根据网格结构,可以利用一对对应点的平移关系解答.【解答】解:根据网格结构,观察对应点A、D,点A向左平移5个单位,再向下平移2个单位即可到达点D的位置,所以平移步骤是:先把△ABC向左平移5个单位,再向下平移2个单位.故选:A.【点评】本题考查了生活中的平移现象,利用对应点的平移规律确定图形的平移规律是解题的关键.4.已知三角形的三个顶点坐标分别是A(﹣2,﹣1),B(1,﹣2),C(0,2).若将△ABC先向右平移2个单位,再向上平移3个单位长度,则所得三角形的三个顶点的坐标分别为()A.(﹣4,2),(﹣1,1),(﹣2,5) B.(0,2),(3,1),(2,5)C.(﹣4,5),(﹣1,4),(﹣2,8) D.(1,1),(4,0),(3,4)【考点】坐标与图形变化﹣平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减即可得到答案.【解答】解:∵A(﹣2,﹣1),B(1,﹣2),C(0,2),∴将△ABC先向右平移2个单位,再向上平移3个单位长度,所得坐标是:(﹣2+2,﹣1+3),(1+2,﹣2+3),(0+2,2+3),即:(0,2,)(3,1)(2,5),故选:B.【点评】此题主要考查了坐标与图形的变化,关键是掌握点的平移的变化规律.5.已知:如图△ABC的顶点坐标分别为A(﹣4,﹣3),B(0,﹣3),C(﹣2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2A.S1>S2 B.S1=S2 C.S1<S2【考点】坐标与图形变化﹣平移.【分析】根据平移的性质可知.【解答】解:△ABC的面积为S1=×4×4=8,将B点平移后得到B1点的坐标是(2,1),所以△AB1C的面积为S2=×4×4=8,所以S1=S2.故选B.【点评】本题考查了平移的性质:由平移知识可得对应点间线段即为平移距离.学生在学习中应该借助图形,理解掌握平移的性质.6.如图,把图中的⊙A经过平移得到⊙O(如图),如果左图中⊙A上一点P的坐标为(m,n),那么平移后在右图中的对应点P′的坐标为()A.(m+2,n+1) B.(m﹣2,n﹣1) C.(m﹣2,n+1) D.(m+2,n﹣1)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由点A的平移规律可知,此题点的移动规律是(x+2,y﹣1),照此规律计算可知P’的坐标为(m+2,n﹣1).故选:D.【点评】本题考查了图形的平移变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.二、解答题8.点(3,﹣2)先向右平移2个单位,再向上平移4个单位,所得的点关于以y轴为对称点的坐标为(﹣5,2).【考点】坐标与图形变化﹣平移.【分析】根据平移时点的坐标变化规律与点关于坐标轴对称性质可得所求点的坐标.【解答】解:已知点坐标为(3,﹣2),根据平移时点的变化规律,平移后,所得点的坐标为(3+2,﹣2+4)即为(5,2),所得点(5,2)关于y轴对称,得点的坐标为(﹣5,2).故答案为:(﹣5,2).【点评】本题考查图形的平移与轴对称变换.平移时,左右平移时点的纵坐标不变,上下平移时点的横坐标不变;点关于x轴对称时,横坐标不变,纵坐标变为相反数,点关于y轴对称时,横坐标变为相反数,纵坐标不变.平移与轴对称变换是中考的常考点.9.如图,一群大雁成人字形向南飞去,分别写出它们的坐标,30秒后,领头大雁飞到A′位置,其他大雁B、C、D、E、F、G飞到什么位置?分别写出这6只大雁的新位置的坐标,并计算出AA′的长度.【考点】坐标与图形变化﹣平移.【专题】应用题.【分析】根据平面直角坐标系写出各点的坐标即可;再根据网格结构找出30秒后各大雁的位置,然后根据平面直角坐标系写出各点的坐标,再利用勾股定理列式计算即可求出AA′的长度.【解答】解:A(1,﹣1),B(2,1),C(﹣1,0),D(3,3),E(﹣3,1),F(5,5),G(﹣5,2);30秒后,这6只大雁的新位置的坐标分别是:B′(5,﹣3),C′(2,﹣4),D′(6,﹣1),E′(0,﹣3),F′(8,1),G′(﹣2,﹣2),AA′==5.【点评】本题考查了坐标与图形变化﹣平移,是基础题,主要利用了在平面直角坐标系中确定点的位置和写出点的坐标.10.如图①,三角形ABC经平移后点A的对应点是点A′,请你在图②中作出平移后所得到的三角形A′B′C′,并计算平移的距离.【考点】作图﹣平移变换.【分析】先根据题意得出A、B、C、A′的坐标,再得出B′、C′的坐标,在坐标轴上描出点B′,C′,然后顺次连接A′、B′、C′,再根据平移后的距离=AA′即可得出结论.【解答】解:由图可知,A(﹣2,2),B(﹣3,﹣2),C(﹣1,﹣3),∵A′(4,﹣1),∴B′(3,﹣5),C′(5,﹣6),在坐标轴上描出点B′,C′,然后顺次连接A′B′C′即可.平移后的距离=AA′=3.【点评】本题考查的是平移变换,熟知平移后的图形与原图形的大小、形状完全相同是解答此题的关键.11.如图,△ABC中,任意一点P(a,b)经平移后对应点P1(a﹣2,b+3),将△ABC作同样的平移得到△A1B1C1(1)求A1,B1,C1的坐标;(2)指出这一平移的平移方向和平移距离.【考点】坐标与图形变化﹣平移.【分析】(1)让原来A、B、C各点的横坐标减去2,纵坐标加上3,即为A1、B1、C1的坐标;(2)根据平移的性质即可确定平移的方向和平移的距离.【解答】解:(1)∵原来点A的坐标为(1,1),B的坐标为(﹣1,﹣1),C的坐标为(4,﹣2),点P(a,b)经平移后对应点P1(a﹣2,b+3),∴A1(﹣1,4);B1(﹣3,2);C1(2,1);(2)将△ABC平移得到△A1B1C1,平移的方向是由A到A1平移的距离为线段AA1的长度,AA1==,即平移的距离为个单位长度.【点评】本题考查了坐标与图形变化﹣平移,图形上对应点的平移规律就是图形上所有点的平移规律;同时考查了平移方向与平移距离的确定,难度适中.12.在平面直角坐标系中,△ABC的三个顶点的位置如图所示,点A′的坐标是(﹣2,2),现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的像△A′B′C′(不写画法),并直接写出点B′、C′的坐标:B′(﹣4,1)、C′(﹣1,﹣1);(2)若△ABC内部一点P的坐标为(a,b),则点P的对应点P′的坐标是(a﹣5,b﹣2).【考点】作图﹣平移变换.【专题】作图题.【分析】根据平移的作图方法作图后直接写出坐标;根据平移的规律可求P′的坐标是(a﹣5,b﹣2).【解答】解:如图:△A′B′C′就是所作的三角形.(1)B′(﹣4,1),C′(﹣1,﹣1);(2)P′的坐标是(a﹣5,b﹣2).【点评】本题考查的是平移变换作图.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.13.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是(16,3),B4的坐标是(32,0);(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推测An的坐标是(2n,3),Bn的坐标是(2n+1,0).【考点】规律型:图形的变化类;点的坐标.【专题】规律型.【分析】根据图形写出点A系列的坐标与点B系列的坐标,根据具体数值找到规律即可.【解答】解:(1)因为A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,那么A4(16,3);因为B(2,0),B1(4,0),B2(8,0),B3(16,0)…纵坐标不变,为0,横坐标都和2有关为2n+1,那么B4的坐标为(32,0);(2)由上题规律可知An的纵坐标总为3,横坐标为2n,Bn的纵坐标总为0,横坐标为2n+1.【点评】依次观察各点的横纵坐标,得到规律是解决本题的关键.第四章因式分解检测题(本试卷满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列因式分解不正确的是() A.m2-16=(m-4)(m+4)C.m2-8m+16=m-422.下列因式分解正确的是()A.2B.-C.xD.3.xA.x+8C.x-24.多项式与多项式的公因式是()A.B. C. D.5.把代数式mx2A.mx+32
C.mx-42
6.若x2+mx-A.-5B.5C.-27.下列多项式:①16x2-x;②x-12-4④-4x2A.①和②B.③和④C.①和④D.②和③8.下列因式分解中,正确的是()A.x2y2-C.x+22-9=x+5x-19.把a3-A.aa+4ba-4bC.aa+2ba-10.把代数式因式分解,下列结果中正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.分解因式:a2-12.分解因式:2a2-4a13.分解因式:(a-b)2-4b2=______________.14.如果x+y=-415.如果多项式x2-mx+n能因式分解为x+2x-5,则m+n的值是16.已知两个正方形的周长差是96cm,面积差是960cm17.阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn==ma+b(2)x=x+y+1试用上述方法因式分解a2+2ab+ac+bc+18.在一个边长为12.75cm的正方形内挖去一个边长为7.25cm三、解答题(共46分)19.(6分)将下列各式因式分解:(1)4x3-820.(6分)利用因式分解计算:121.(6分)两位同学将一个二次三项式因式分解,一位同学因看错了一次项系数而分解成2x-1x-9,另一位同学因看错了常数项而分解成2x-222.(6分)已知x+y=4,xy=23.(6分)已知a,b,c是试判断此三角形的形状.24.(8分)请你从下列各式中,任选两式作差,并将得到的式子进行因式分解.4a25.(8分)通过学习,同学们已经体会到灵活运用乘法公式使整式的乘法运算方便、快捷.相信通过对下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.例:用简便方法计算:195×解:195=200-=2002=39975.(1)例题求解过程中,第②步变形是利用_____________(填乘法公式的名称).(2)用简便方法计算:9×第四章因式分解检测题参考答案1.D解析:D选项中m+322.C解析:2x2--xy2xx-yx2-2x3.B解析:x-4.A解析:mx2-m=m(x-1)(x+1),x2-2x+1=(x-1)2,多项式mx2-m与多项式x2-2x+1的公因式是x-1,故选A.5.D解析:当一个多项式有公因式,将其因式分解时应先提取公因式,再对余下的多项式继续分解,故m6.C解析:右边=x2+3+nx+3n,与左边相比较,3n=-157.D解析:①16x②x-12③x+12④-4x所以因式分解后,结果中含有相同因式的是②和③.故选D.8.C解析:A.用平方差公式,应为x2B.用提公因式法,应为-xC.用平方差公式,应为x+2D.用完全平方公式,应为9-12a+4a29.C解析:本题先提公因式a,再运用平方差公式因式分解.a310.A解析:本题先提公因式a,再运用完全平方公式因式分解.=ax211.a+3a-12.2a-1213.解析:14.-32 解析:当x+y=-415.-7解析:∵多项式x2-mx+n能因式分解为x+2x-5,
∴x2-mx+n=∴m+n=3-10=-7.16.32cm,8cm解析:设这两个正方形的边长分别为a则4a-4b=96,a2-b所以a+b=960÷24=40.17.a+ba+b+c=a+b18.110解析:12.75219.解:(1)4(2)9===420.解:1=====21.分析:由于含字母x的二次三项式的一般形式为ax2+bx+c(其中a,b,c均为常数,且abc≠0),所以可设原多项式为ax2+bx+c.看错了一次项系数(即b值看错),而a与c的值正确,根据因式分解与整式的乘法互为逆运算,可将2x-1x-9运用多项式的乘法法则展开求出a与c的值;同样,看错了常数项(即c值看错),解:设原多项式为ax2+bx+c(其中a∵2x-1∴a=2,又∵2x-2∴b=-12.∴原多项式为2x2-12x+182x22.解:x当x+y=4,xy=23.解:a2+2所以a-b2+b-c2=0所以△ABC是等边三角形.24.解:本题答案不唯一.例如:4a4425.解:(1)平方差公式;(2)9=100-1100+1第五章分式与分式方程检测题(本试卷满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列分式是最简分式的是()A.B.C.D.2.将分式中的、的值同时扩大倍,则分式的值()A.扩大倍B.缩小到原来的C.保持不变D.无法确定3.若分式的值为零,则x的值为()A.x=-1或C.x=1 D.4.对于下列说法,错误的个数是()①2x-yπ是分式;②当时,成立;③当x=-3时,分式的值是零;④⑤;⑥.A.6B.5C.45.计算的结果是()A.1B.x+1C.D.6.化简a2+2ab+b2a2-b7.方程3xA.x=2 B.x=6 C.x=-6 D.无解8.若解分式方程产生增根,则m=()A.1B.0 C.-4 D.-9.某人生产一种零件,计划30天完成,若每天多生产6个,则25天完成且还多生产10个,问原计划每天生产多少个零件?设原计划每天生产x个零件,列方程得()A.B.C.D.10.某工程需要在规定日期内完成,如果甲工程队单独做,恰好如期完成;如果乙工程队单独做,则超过规定日期3天.现在甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,求规定日期.如果设规定日期为x天,下面所列方程中错误的是()A.B.C.D.二、填空题(每小题3分,共24分)11.若分式的值为零,则.12.将下列分式约分:(1)=;(2)=;(3)=.13.计算:=.14.已知3m=4n15.分式方程1x16.计算ba2-b217.为改善生态环境,防止水土流失,某村拟在荒坡地上种植960棵树,由于青年团员的支持,每日比原计划多种20棵,结果提前4天完成任务,原计划每天种植多少棵树?设原计划每天种植x棵树,根据题意可列方程__________________.18.在5月汛期,重庆某沿江村庄因洪水而沦为弧岛.当时洪水流速为10km/h,张师傅奉命用冲锋舟去救援,他发现沿洪水顺流以最大速度航行2km所用时间,与以最大速度逆流航行1.2km三、解答题(共46分)19.(8分)计算与化简:(1);(2);(3);(4).20.(6分)先化简,再求值:,其中QUOTEa=-8,.21.(6分)若-=2,求的值.22.(6分)先化简,再求值:x+22x2-4x÷23.(6分)已知,求代数式的值.24.(8分)解下列分式方程:(1);(2).25.(6分)甲、乙两位同学同时为校文化艺术节制作彩旗,已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?第五章分式与分式方程检测题参考答案1.C解析:,故A不是最简分式;,故B不是最简分式;,故D不是最简分式;C是最简分式.2.A解析:因为,所以分式的值扩大2倍.3.C解析:若分式的值为零,则x2-1=0且x+1≠04.B解析:2x-yπ不是分式,故=1\*GB3①不正确;当时,成立,故②正确;当x=-3时,分式的分母x-3=0,分式无意义,故=3\*GB3③不正确;a÷b×1b=ab×1b=aax+ay=ax+yxy,故2-x∙32-x=4-2x-3x2-x=4-5x2-x,5.C解析:=xx-16.A解析:a2+7.B解析:去分母,得3(x-2)=2x,解得x=6,经检验x=6是分式方程的解.8.D解析:方程两边都乘(x+4),得x-1=m.又由题意知分式方程的增根为x=-4,把增根x=-4代入方程x-1=m,得m=-59.B解析:原计划生产30x个零件,若每天多生产6个,则25天共生产30x+10个零件,根据题意列分式方程,得10.A解析:设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为1x;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为1x+3.由题意可知,,整理,得,所以,即,所以A,B,C选项均正确,选项D不正确.11.-3解析:若分式的值为零,则x-3=0且x-3≠0,12.(1)(2)(3)1解析:(1)=;(2)=;(3)=.13.解析:14.解析:因为3m=4n≠0,所以所以15.解析:,,经检验是原方程的根.16.1a-b解析:ba2-b2÷1-aa17.解析:根据原计划完成任务的天数-实际完成任务的天数=4,列方程即可,依题意可列方程为.18.40km/h解析:设该冲锋舟在静水中的最大航速为xkm/h,则219.解:(1)原式=(2)原式=.(3)原式==.(4)原式====.20.解:当a=-8,b=时,原式21.解:因为-=2,所以x-y=-2xy.所以22.解:x+22x2-4x÷=x+22xx-当x=2-1时,原式=122-23.解:由已知,得解得原式==.当a=-,时,原式=.24.解:(1)方程两边都乘x(x+7),得100x+700=30x解这个一元一次方程,得x=-10.检验:把x=-10所以,x=(2)方程两边都乘2-3xQUOTE(2−3𝑥),得7-9x-4x-5=2-3x.整理,得10x=10.解这个一元一次方程,得x=1QUOTE𝑥=1.检验:把x=1QUOTE𝑥=1代入原方程,左边右边.所以,x=1QUOTE𝑥=1是原方程的根.25.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗.根据题意,得60x解这个方程,得x=25.经检验,x=25是所列方程的根.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.第六章平行四边形检测题(本试卷满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.如图,在□ABCD中,AB=3,BC=5,AC的垂直平分线交AD于点E,则△CDE的周长是()A.6 B.8 C.9 D第2第2题图ABCD第1题图ABCDE2.如图,□ABCD的周长是28cm,△ABC的周长是22A.6cm B.12cm C.4cm 3.正八边形的每个内角为()A.120°B.135°C.140°D.144°4.在□ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=180°C.AB=ADD.∠A≠∠C5.多边形的内角中,锐角的个数最多为()A.1 B.2 C.3 6.在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC7.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6B.12C.20D.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 开放创新与创业孵化制度
- 【寒假阅读提升】四年级下册语文试题-说明文阅读(二)-人教部编版(含答案解析)
- 算法设计与分析 课件 9.4-概率算法 - 蒙特卡罗算法
- 2024年乌鲁木齐2024年客运试题从业资格证考试
- 2024年西藏客运资格证紧急救护试题及答案
- 2024年内蒙古客车从业资格证模拟考试答题
- 2024年西安客运资格证考试试题模拟
- 2024年滨州客运从业资格证考试模拟
- 2024年重庆客运从业资格考试题库答案
- 2024年铜仁客运从业资格证试题
- 初中英语新课程标准词汇表
- 创伤失血性休克中国急诊专家共识(2023)解读
- 学校体育与社区体育融合发展的研究
- 中国旅游地理智慧树知到课后章节答案2023年下平凉职业技术学院
- 工程竣工移交报告
- 心理健康拒绝内耗课件
- 工厂反骚扰虐待强迫歧视政策
- 航测外业飞行作业指导书
- 部编本语文四年级上册第三单元教材解读-PPT
- 生活满意度量表(SWLS)
- 医疗器械质量管理体系文件模板
评论
0/150
提交评论