版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知实数列-1,x,y,z,-2成等比数列,则xyz等于A.-4 B. C. D.2.已知等差数列的前项和,若,则()A.25 B.39 C.45 D.543.已知函数,其中为整数,若在上有两个不相等的零点,则的最大值为()A. B. C. D.4.设,则A.-1 B.1 C.ln2 D.-ln25.现有1瓶矿泉水,编号从1至1.若从中抽取6瓶检验,用系统抽样方法确定所抽的编号为()A.3,13,23,33,43,53 B.2,14,26,38,42,56C.5,8,31,36,48,54 D.5,10,15,20,25,306.直线与直线的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差为()A. B.3 C. D.48.已知函数(,)的部分图像如图所示,则的值分别是()A. B.C. D.9.角的终边过点,则等于()A. B. C. D.10.在中,角的对边分别是,若,则()A.5 B. C.4 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知一组样本数据,且,平均数,则该组数据的标准差为__________.12.化简:________13.下列关于函数与的命题中正确的结论是______.①它们互为反函数;②都是增函数;③都是周期函数;④都是奇函数.14.设函数,则使得成立的的取值范围是_______________.15.若,且,则=_______.16.在行列式中,元素的代数余子式的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知矩形ABCD中,,,M是以CD为直径的半圆周上的任意一点(与C,D均不重合),且平面平面ABCD.(1)求证:平面平面BCM;(2)当四棱锥的体积最大时,求AM与CD所成的角.18.已知圆的半径是2,圆心在直线上,且圆与直线相切.(1)求圆的方程;(2)若点是圆上的动点,点在轴上,的最大值等于7,求点的坐标.19.已知的三个内角的对边分别为,且,(1)求证:;(2)若是锐角三角形,求的取值范围.20.如图,在直三棱柱中,,,分别是,,的中点.(1)求证:平面;(2)若,求证:平面平面.21.已知数列的前项和();(1)判断数列是否为等差数列;(2)设,求;(3)设(),,是否存在最小的自然数,使得不等式对一切正整数总成立?如果存在,求出;如果不存在,说明理由;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】.2、A【解析】
设等差数列的公差为,从而根据,即可求出,这样根据等差数列的前项和公式即可求出.【详解】解:设等差数列的公差为,则由,得:,,,故选:A.【点睛】本题主要考查等差数列的通项公式和等差数列的前项和公式,属于基础题.3、A【解析】
利用一元二次方程根的分布的充要条件得到关于的不等式,再由为整数,可得当取最小时,取最大,从而求得答案.【详解】∵在上有两个不相等的零点,∴∵,∴当取最小时,取最大,∵两个零点的乘积小于1,∴,∵为整数,令时,,满足.故选:A.【点睛】本题考查一元二次函数的零点,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意为整数的应用.4、C【解析】
先把化为,再根据公式和求解.【详解】故选C.【点睛】本题考查对数、指数的运算,注意观察题目之间的联系.5、A【解析】
根据系统抽样原则,可知编号成公差为的等差数列,观察选项得到结果.【详解】根据系统抽样原则,可知所抽取编号应成公差为的等差数列选项编号公差为;选项编号不成等差;选项编号公差为;可知错误选项编号满足公差为的等差数列,正确本题正确选项:【点睛】本题考查抽样方法中的系统抽样,关键是明确系统抽样的原则和特点,属于基础题.6、B【解析】
联立方程组,求得交点的坐标,即可得到答案.【详解】由题意,联立方程组:,解得,即两直线的交点坐标为,在第二象限,选B.【点睛】本题主要考查了两条直线的位置关系的应用,着重考查了运算与求解能力,属于基础题.7、C【解析】
由平均数公式求得原有7个数的和,可得新的8个数的平均数,由于新均值和原均值相等,因此由方差公式可得新方差.【详解】因为7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的平均数为,方差为,由平均数和方差的计算公式可得,.故选:C.【点睛】本题考查均值与方差的概念,掌握均值与方差的计算公式是解题关键.8、B【解析】
通过函数图像可计算出三角函数的周期,从而求得w,再代入一个最低点即可得到答案.【详解】,,又,,,又,,故选B.【点睛】本题主要考查三角函数的图像,通过周期求得w是解决此类问题的关键.9、B【解析】由三角函数的定义知,x=-1,y=2,r==,∴sinα==.10、D【解析】
已知两边及夹角,可利用余弦定理求出.【详解】由余弦定理可得:,解得.故选D.【点睛】本题主要考查利用正余弦定理解三角形,注意根据条件选用合适的定理解决.二、填空题:本大题共6小题,每小题5分,共30分。11、11【解析】
根据题意,利用方差公式计算可得数据的方差,进而利用标准差公式可得答案.【详解】根据题意,一组样本数据,且,平均数,则其方差,则其标准差,故答案为:11.【点睛】本题主要考查平均数、方差与标准差,属于基础题.样本方差,标准差.12、【解析】
根据三角函数的诱导公式,准确运算,即可求解.【详解】由题意,可得.故答案为:.【点睛】本题主要考查了三角函数的诱导公式的化简、求值问题,其中解答中熟记三角函数的诱导公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.13、④【解析】
利用反函数,增减性,周期函数,奇偶性判断即可【详解】①,当时,的反函数是,故错误;②,当时,是增函数,故错误;③,不是周期函数,故错误;④,与都是奇函数,故正确故答案为④【点睛】本题考查正弦函数及其反函数的性质,熟记其基本性质是关键,是基础题14、【解析】
根据函数的表达式判断出函数为偶函数,判断函数在的单调性为递增,根据偶函数的对称性可得,解绝对值不等式即可.【详解】解:,定义域为,因为,所以函数为偶函数.当时,易知函数在为增函数,根据偶函数的性质可知:由可知,所以,解得:或.故答案为:.【点睛】本题考查偶函数的性质和利用偶函数对称性的特点解决问题,属于基础题.15、【解析】
由的值及,可得的值,计算可得的值.【详解】解:由,且,由,可得,故,故答案为:.【点睛】本题主要考查了同角三角函数的基本关系,熟练掌握其基本关系是解题的关键.16、【解析】
根据余子式的定义,要求的代数余子式的值,这个元素在三阶行列式中的位置是第一行第二列,那么化去第一行第二列得到的代数余子式,解出即可.【详解】解:在行列式中,元素在第一行第二列,那么化去第一行第二列得到的代数余子式为:解这个余子式的值为,故元素的代数余子式的值是.故答案为:【点睛】考查学生会求行列式中元素的代数余子式,行列式的计算方法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)只证明CM⊥平面ADM即可,即证明CM垂直于该平面内的两条相交直线,或者使用面面垂直的性质,本题的条件是平面CDM⊥平面ABCD,而M是以CD为直径的半圆周上一点,能够得到CM⊥DM,由面面垂直的性质即可证明;(2)当四棱锥M一ABCD的体积最大时,M为半圆周中点处,可得角MAB就是AM与CD所成的角,利用已知即可求解.【详解】(1)证明:CD为直径,所以CMDM,已知平面CDM平面ABCD,ADCD,AD平面CDM,所以ADCM又DMAD=DCM平面ADM又CM平面BCM,平面ADM平面BCM,(2)当M为半圆弧CD的中点时,四棱锥的体积最大,此时,过点M作MOCD于点E,平面CDM平面ABCDMO平面ABCD,即MO为四棱锥的高又底面ABCD面积为定值2,AM与CD所成的角即AM与AB所成的角,求得,三角形为正三角形,,故AM与CD所成的角为【点睛】本题主要考查异面直线成的角,面面垂直的判定定理,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.18、(1)或;(2)或.【解析】
(1)利用圆心在直线上设圆心坐标,利用相切列方程即可得解;(2)利用最大值为7确定圆,设点的坐标,找到到圆上点的最大距离列方程得解.【详解】解:(1)设圆心的坐标为,因为圆与直线相切,所以,即,解得或,故圆的方程为:,或;(2)由最大值等于可知,若圆的方程为,则的最小值为,故不故符合题意;所以圆的方程为:,设,则,的最大值为:,得,解得或.故点的坐标为或.【点睛】此题考查了圆方程的求法,点到圆上点的距离最值等,属于中档题.19、(1)证明见解析;(2)【解析】
(1)由,联立,得,然后边角转化,利用和差公式化简,即可得到本题答案;(2)利用正弦定理和,得,再确定角C的范围,即可得到本题答案.【详解】解:(1)锐角中,,故由余弦定理可得:,,,即,∴利用正弦定理可得:,即,,可得:,∴可得:,或(舍去),.(2),均为锐角,由于:,,.再根据,可得,,【点睛】本题主要考查正余弦定理的综合应用,其中涉及到利用三角函数求取值范围的问题.20、(1)详见解析(2)详见解析【解析】
(1)利用中位线定理可得∥,从而得证;(2)先证明,从而有平面,进而可得平面平面.【详解】(1)因为分别是的中点,所以∥.因为平面,平面,所以∥平面.(2)在直三棱柱中,平面,因为平面,所以.因为,且是的中点,所以.因为,平面,所以平面.因为平面,所以平面平面.【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.21、(1)否;(2);(3);【解析】
(1)根据数列中与的关系式,即可求解数列的通项公式,再结合等差数列的定义,即可求解;(2)由(1)知,求得当时,,当时,,利用等差数列的前项和公式,分类讨论,即可求解.(3)由(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年版建筑劳务专业分包简易协议版B版
- 《软件质量与测试》课件第二章软件测试技术(黑盒)
- 2024全新家政服务合同下载含老人陪护服务内容3篇
- 《肌营养不良症》课件
- 《报纸资源介绍》课件
- 《K线讲解标准全面》课件
- 2024年海报设计合作协议文件版B版
- 2025消防清包工合同范文
- 工业废气处理沼气工程协议
- 市政工程水电安装工程施工合同
- 陕西省汉中市洋县2022-2023学年六年级上学期期末水平测试语文试卷
- 课外古诗词诵读《采桑子(轻舟短棹西湖好)》教学设计 统编版语文八年级上册
- 中大班社会领域《我的情绪小屋》课件
- 2023年抖音运营陪跑协议书
- 小儿鼻炎调理课程课件
- 股东损害公司债权人利益责任纠纷起诉状(成功范文)
- 家庭财务管理系统
- 逆向思维的含义与作用课件教学
- 冠寓运营管理手册
- 2023年上海市15区物理中考一模分类汇编6伏安法测电阻、测电功率含答案
- 解剖学讲脑干
评论
0/150
提交评论