2023年内蒙古锦山蒙古族中学数学高一第二学期期末统考模拟试题含解析_第1页
2023年内蒙古锦山蒙古族中学数学高一第二学期期末统考模拟试题含解析_第2页
2023年内蒙古锦山蒙古族中学数学高一第二学期期末统考模拟试题含解析_第3页
2023年内蒙古锦山蒙古族中学数学高一第二学期期末统考模拟试题含解析_第4页
2023年内蒙古锦山蒙古族中学数学高一第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知某数列的前项和(为非零实数),则此数列为()A.等比数列 B.从第二项起成等比数列C.当时为等比数列 D.从第二项起的等比数列或等差数列2.已知数列的前4项依次为,1,,,则该数列的一个通项公式可以是()A. B.C. D.3.若,,表示三条不重合的直线,,表示两个不同的平面,则下列命题中,正确的个数是()①若,,则②,,,则③若,,则④若,,则A.0 B.1 C.2 D.34.已知过原点的直线与圆C:相交于不同的两点,且线段的中点坐标为,则弦长为()A.2 B.3 C.4 D.55.为了调查老师对微课堂的了解程度,某市拟采用分层抽样的方法从,,三所中学抽取60名教师进行调查,已知,,三所学校中分别有180,270,90名教师,则从学校中应抽取的人数为()A.10 B.12 C.18 D.246.若角的终边过点,则()A. B. C. D.7.若等差数列和的公差均为,则下列数列中不为等差数列的是()A.(为常数) B.C. D.8.在等差数列中,,则等于()A.2 B.18 C.4 D.99.一条直线经过点,并且它的倾斜角等于直线倾斜角的2倍,则这条直线的方程是()A. B.C. D.10.在三棱柱中,底面,是正三角形,若,则该三棱柱外接球的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知六棱锥的底面是正六边形,平面,.则下列命题中正确的有_____.(填序号)①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直线PD与平面ABC所成的角为45°.12.设向量,定义一种向量积:.已知向量,点P在的图象上运动,点Q在的图象上运动,且满足(其中O为坐标原点),则的单调增区间为________.13.某扇形的面积为1,它的周长为4cm,那么扇形的圆心角的大小为____________.14.已知向量,,若,则__________.15.在等比数列中,,,则_____.16.设,向量,,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.对于函数f1(x), f2(x), h(x),如果存在实数(1)下面给出两组函数,h(x)是否分别为f1第一组:f1第二组:;(2)设f1x=log2x,f2x18.已知数列前项和为,满足,(1)证明:数列是等差数列,并求;(2)设,求证:.19.已知函数的定义域为A,的定义域为B.(1)若,求的取值范围;(2)若,求实数的值及实数的取值范围.20.如图,在三棱锥中,,,,,为线段的中点,为线段上一点.(1)求证:平面平面;(2)当平面时,求三棱锥的体积.21.从某学校高三年级共800名男生中随机抽取50名学生作为样本测量身高.测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组;第二组;…;第八组.下图是按上述分组方法得到的频率分布直方图的一部分.已知第一组与第八组人数相同,第六组与第八组人数之和为第七组的两倍.(1)估计这所学校高三年级全体男生身高在180cm以上(含180cm)的人数;(2)求第六组和第七组的频率并补充完整频率分布直方图.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

设数列的前项和为,运用数列的递推式:当时,,当时,,结合等差数列和等比数列的定义和通项公式,即可得到所求结论.【详解】设数列的前项和为,对任意的,(为非零实数).当时,;当时,.若,则,此时,该数列是从第二项起的等差数列;若且,不满足,当时,,此时,该数列是从第二项起的等比数列.综上所述,此数列为从第二项起的等比数列或等差数列.故选:D.【点睛】本题考查数列的递推式的运用,等差数列和等比数列的定义和通项公式,考查分类讨论思想和运算能力,属于中档题.2、A【解析】

根据各选择项求出数列的首项,第二项,用排除法确定.【详解】可用排除法,由数列项的正负可排除B,D,再看项的绝对值,在C中不合题意,排除C,只有A.可选.故选:A.【点睛】本题考查数列的通项公式,已知数列的前几项,选择一个通项公式,比较方便,可以利用通项公式求出数列的前几项,把不合的排除即得.3、B【解析】

①根据空间线线位置关系的定义判定;②根据面面平行的性质判定;③根据空间线线垂直的定义判定;④根据线面垂直的性质判定.【详解】解:①若,,与的位置关系不定,故错;②若,,,则或、异面,故错;③若,,则或、异面,故错;④若,,则,故正确.故选:.【点睛】本题考查了空间线面位置关系,考查了空间想象能力,属于中档题.4、A【解析】

根据两直线垂直,斜率相乘等于-1,求得直线的斜率为,进而求出圆心到直线的距离,再代入弦长公式求得弦长值.【详解】圆的标准方程为:,设圆心,,,,,直线的方程为:,到直线的距离,.【点睛】求直线与圆相交的弦长问题,核心是利用点到直线的距离公式,求圆心到直线的距离.5、A【解析】

按照分层抽样原则,每部分抽取的概率相等,按比例分配给每部分,即可求解.【详解】,,三所学校教师总和为540,从中抽取60人,则从学校中应抽取的人数为人.故选:A.【点睛】本题考查分层抽样抽取方法,按比例分配是解题的关键,属于基础题.6、D【解析】

解法一:利用三角函数的定义求出、的值,再利用二倍角公式可得出的值;解法二:利用三角函数的定义求出,再利用二倍角公式以及弦化切的思想求出的值.【详解】解法一:由三角函数的定义可得,,,故选D.解法二:由三角函数定义可得,所以,,故选D.【点睛】本题考查三角函数的定义与二倍角公式,考查同角三角函数的定义,利用三角函数的定义求值是解本题的关键,同时考查了同角三角函数基本思想的应用,考查计算能力,属于基础题.7、D【解析】

利用等差数列的定义对选项逐一进行判断,可得出正确的选项.【详解】数列和是公差均为的等差数列,则,,.对于A选项,,数列(为常数)是等差数列;对于B选项,,数列是等差数列;对于C选项,,所以,数列是等差数列;对于D选项,,不是常数,所以,数列不是等差数列.故选:D.【点睛】本题考查等差数列的定义和通项公式,注意等差数列定义的应用,考查推理能力,属于中等题.8、D【解析】

利用等差数列性质得到,,计算得到答案.【详解】等差数列中,故选:D【点睛】本题考查了等差数列的计算,利用性质可以简化运算,是解题的关键.9、B【解析】

先求出直线的倾斜角,进而得出所求直线的倾斜角和斜率,再根据点斜式写直线的方程.【详解】已知直线的斜率为,则倾斜角为,故所求直线的倾斜角为,斜率为,由直线的点斜式得,即。故选B.【点睛】本题考查直线的性质与方程,属于基础题.10、C【解析】

设球心为,的中心为,求出与,利用勾股定理求出外接球的半径,代入球的表面积公式即可.【详解】设球心为,的中心为,则,,球的半径,所以球的表面积为.故选:C【点睛】本题考查多面体外接球问题,球的表面积公式,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、②④【解析】

利用题中条件,逐一分析答案,通过排除和筛选,得到正确答案.【详解】∵AD与PB在平面的射影AB不垂直,∴①不成立;∵PA⊥平面ABC,∴PA⊥AB,在正六边形ABCDEF中,AB⊥AE,PAAE=A,∴AB⊥平面PAE,且AB面PAB,∴平面PAB⊥平面PAE,故②成立;∵BC∥AD∥平面PAD,平面PAD平面PAE=PA,∴直线BC∥平面PAE也不成立,即③不成立.在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④成立.故答案为②④.【点睛】本题考查命题真假的判断,解题时要注意直线与平面成的角、直线与平面垂直的性质的合理运用,属于中档题.12、【解析】

设,,由求出的关系,用表示,并把代入即得,后利用余弦函数的单调性可得增区间.【详解】设,,由得:,∴,,∵,∴,,即,令,得,∴增区间为.故答案为:.【点睛】本题考查新定义,正确理解新定义运算是解题关键.考查三角函数的单调性.利用新定义建立新老图象间点的联系,求出新函数的解析式,结合余弦函数性质求得增区间.13、【解析】

根据扇形的面积和周长列方程组解得半径和弧长,再利用弧长公式可求得结果.【详解】设扇形的半径为,弧长为,圆心角为,则,解得,所以.故答案为:【点睛】本题考查了扇形的面积公式,考查了扇形中弧长公式,属于基础题.14、1【解析】由,得.即.解得.15、1【解析】

由等比数列的性质可得,结合通项公式可得公比q,从而可得首项.【详解】根据题意,等比数列中,其公比为,,则,解可得,又由,则有,则,则;故答案为:1.【点睛】本题考查等比数列的通项公式以及等比数列性质(其中m+n=p+q)的应用,也可以利用等比数列的基本量来解决.16、【解析】从题设可得,即,应填答案.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)(-∞,-5)【解析】

(1)①设asinx+bcos取a=12,  b=②设a(x2-x)+b(则a+b=1-a+b=-1b=1,该方程组无解.所以h(x)不是(2)因为f1所以h(x)=2f不等式3h2(x)+2等价于t<-3h2(x)-2令s=log2x,则s∈[1,知y取得最大值-5,所以t<-5.考点:①创新题型即新定义问题②不等式有解球参数范围问题18、(1).(2)见解析.【解析】(1)由可得,当时,,两式相减可是等差数列,结合等差数列的通项公式可求进而可求(2)由(1)可得,利用裂项相消法可求和,即可证明.试题分析:(1)(2)试题解析:(1)由知,当即所以而故数列是以1为首项,1为公差的等差数列,且(2)因为所以考点:数列递推式;等差关系的确定;数列的求和19、(1);(2).【解析】

(1)因为恒成立,时,不恒成立;时,由解得,综上,.(2)因为,所以,所以所以,即的解集为,所以有,即;因为且,所以,设方程的两根分别为,则,令,则应有,所以的取值范围是.20、(1)见证明;(2)【解析】

(1)利用线面垂直判定定理得平面,可得;根据等腰三角形三线合一得,利用线面垂直判定定理和面面垂直判定定理可证得结论;(2)利用线面平行的性质定理可得,可知为中点,利用体积桥可知,利用三棱锥体积公式可求得结果.【详解】(1)证明:,平面又平面,为线段的中点平面平面平面平面(2)平面,平面平面为中点为中点三棱锥的体积为【点睛】本题考查面面垂直的证明、三棱锥体积的求解,涉及到线面垂直的判定和性质定理、面面垂直的判定定理、线面平行的性质定理、棱锥体积公式、体积桥方法的应用,属于常考题型.21、(1)144人(2)频率分别为0.08和0.1,见解析【解析】

(1)由直方图求出前五组频率为0.82,后三组频率为,由此能求出这所学校高三男生身高在以上(含的人数.(2)由频率分布直方图得第八组频率为0.04,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论