2023年辽宁朝阳市普通高中数学高一第二学期期末学业质量监测模拟试题含解析_第1页
2023年辽宁朝阳市普通高中数学高一第二学期期末学业质量监测模拟试题含解析_第2页
2023年辽宁朝阳市普通高中数学高一第二学期期末学业质量监测模拟试题含解析_第3页
2023年辽宁朝阳市普通高中数学高一第二学期期末学业质量监测模拟试题含解析_第4页
2023年辽宁朝阳市普通高中数学高一第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,则方程有实数根的概率为()A. B. C. D.2.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A.若α∥β,mα,nβ,则m∥n B.若α⊥β,mα,则m⊥βC.若α⊥β,mα,nβ,则m⊥n D.若α∥β,mα,则m∥β3.下列函数所具有的性质,一定成立的是()A. B.C. D.4.若,则下列不等式不成立的是()A. B. C. D.5.下列结论正确的是()A. B.若,则C.当且时, D.6.在数列an中,a1=1,an=2A.211 B.27.阅读如图所示的程序框图,当输入时,输出的()A.6 B. C.7 D.8.若平面平面,直线,直线,则关于直线、的位置关系的说法正确的是()A. B.、异面 C. D.、没有公共点9.函数(其中,,)的图象如图所示,为了得到的图象,只需把的图象上所有的点()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度10.若且,则下列四个不等式:①,②,③,④中,一定成立的是()A.①② B.③④ C.②③ D.①②③④二、填空题:本大题共6小题,每小题5分,共30分。11.在锐角△中,角所对应的边分别为,若,则角等于________.12.函数在的值域是______________.13.函数的定义域为________14.数列的前项和为,,且(),记,则的值是________.15.一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为.16.函数的单调递减区间是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,长方形材料中,已知,.点为材料内部一点,于,于,且,.现要在长方形材料中裁剪出四边形材料,满足,点、分别在边,上.(1)设,试将四边形材料的面积表示为的函数,并指明的取值范围;(2)试确定点在上的位置,使得四边形材料的面积最小,并求出其最小值.18.已知函数(其中)的图象如图所示:(1)求函数的解析式及其对称轴的方程;(2)当时,方程有两个不等的实根,求实数的取值范围,并求此时的值.19.已知向量,,,.(1)求的最小值及相应的t的值;(2)若与共线,求实数m.20.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.21.已知数列中,,.(1)证明数列为等比数列,并求的通项公式;(2)数列满足,数列的前项和为,求证.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】方程有实数根,则:,即:,则:,如图所示,由几何概型计算公式可得,满足题意的概率值为:.本题选择B选项.2、D【解析】

在中,与平行或异面;在中,与相交、平行或;在中,与相交、平行或异面;在中,由线面平行的性质定理得.【详解】由,是两条不同的直线,,是两个不同的平面,知:在中,若,,,则与平行或异面,故错误;在中,若,,则与相交、平行或,故错误;在中,若,,,则与相交、平行或异面,故错误;在中,若,,则由线面平行的性质定理得,故正确.故选.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.3、B【解析】

结合反三角函数的性质,逐项判定,即可求解.【详解】由题意,对于A中,令,则,所以不正确;对于C中,根据反正弦函数的性质,可得,所以是错误的;对于D中,函数当时,则满足,所以不正确,故选:B.【点睛】本题主要考查了反三角函数的性质的应用,其中解答中熟记反三角函数的性质,逐项判定是解答的关键,着重考查了推理与运算能力,属于基础题.4、A【解析】

由题得a<b<0,再利用作差比较法判断每一个选项的正误得解.【详解】由题得a<b<0,对于选项A,=,所以选项A错误.对于选项B,显然正确.对于选项C,,所以,所以选项C正确.对于选项D,,所以选项D正确.故答案为A【点睛】(1)本题主要考查不等式的基本性质和实数大小的比较,意在考查学生对这些知识的掌握水平和分析推理能力.(2)比差的一般步骤是:作差→变形(配方、因式分解、通分等)→与零比→下结论;比商的一般步骤是:作商→变形(配方、因式分解、通分等)→与1比→下结论.如果两个数都是正数,一般用比商,其它一般用比差.5、D【解析】

利用不等式的性质进行分析,对错误的命题可以举反例说明.【详解】当时,A不正确;,则,B错误;当时,,,C错误;由不等式的性质正确.故选:D.【点睛】本题考查不等式的性质,掌握不等式性质是解题关键.可通过反例说明命题错误.6、D【解析】

将a1=1代入递推公式可得a2,同理可得出a【详解】∵a1=1,an=22an-1-1(【点睛】本题用将a17、D【解析】

根据程序框图,依次运行程序即可得出输出值.【详解】输入时,,,,,,,输出故选:D【点睛】此题考查程序框图,关键在于读懂框图,根据结构依次运算,求出输出值,尤其注意判断框中的条件.8、D【解析】

根据条件知:关于直线、的位置关系异面或者平行,故没有公共点.【详解】若平面平面,直线,直线,则关于直线、的位置关系是异面或者平行,所以、没有公共点.故答案选D【点睛】本题考查了直线,平面的位置关系,意在考查学生的空间想象能力.9、C【解析】

通过图象可以知道:最低点的纵坐标为,函数的图象与横轴的交点的坐标为,与之相邻的最低点的坐标为,这样可以求出和最小正周期,利用余弦型函数最小正周期公式,可以求出,把零点代入解析式中,可以求出,这样可以求出函数的解析式,利用诱导公式化为正弦型三角函数解析式形式,最后利用平移变换解析式的变化得出正确答案.【详解】由图象可知:函数的最低点的纵坐标为,函数的图象与横轴的交点的坐标为,与之相邻的最低点的坐标为,所以,设函数的最小正周期为,则有,而,把代入函数解析式中,得,所以,而,显然由向右平移个单位长度得到的图象,故本题选C.【点睛】本题考查了由函数图象求余弦型函数解析式,考查了正弦型函数图象之间的平移变换规律.10、C【解析】

根据且,可得,,且,,根据不等式的性质可逐一作出判断.【详解】由且,可得,∴,且,,由此可得①当a=0时,不成立,②由,,则成立,③由,,可得成立,④由,若,则不成立,因此,一定成立的是②③,故选:C.【点睛】本题考查不等式的基本性质的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:利用正弦定理化简,得,因为,所以,因为为锐角,所以.考点:正弦定理的应用.【方法点晴】本题主要考查了正弦定理的应用、以及特殊角的三角函数值问题,其中解答中涉及到解三角形中的边角互化,转化为三角函数求值的应用,解答中熟练掌握正弦定理的变形,完成条件的边角互化是解答的关键,注重考查了分析问题和解答问题的能力,同时注意条件中锐角三角形,属于中档试题.12、【解析】

利用,即可得出.【详解】解:由已知,,又

故答案为:.【点睛】本题考查了反三角函数的求值、单调性,考查了推理能力与计算能力,属于中档题.13、【解析】

根据反余弦函数的定义,可得函数满足,即可求解.【详解】由题意,根据反余弦函数的定义,可得函数满足,解得,即函数的定义域为.故答案为:【点睛】本题主要考查了反余弦函数的定义的应用,其中解答中熟记反余弦函数的定义,列出不等式求解是解答的关键,着重考查了推理与运算能力,属于基础题.14、3【解析】

由已知条件推导出是首项为,公比为的等比数列,由此能求出的值.【详解】解:因为数列的前项和为,,且(),,.即,.是首项为,公比为的等比数列,故答案为:【点睛】本题考查数列的前项和的求法,解题时要注意等比数列的性质的合理应用,属于中档题.15、【解析】

设球的半径为r,则,,,所以,故答案为.考点:圆柱,圆锥,球的体积公式.点评:圆柱,圆锥,球的体积公式分别为.16、【解析】

求出函数的定义域,结合复合函数求单调性的方法求解即可.【详解】由,解得令,则函数在区间上单调递减,在区间上单调递增函数在定义域内单调递增函数的单调递减区间是故答案为:【点睛】本题主要考查了复合函数的单调性,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)当时,四边形材料的面积最小,最小值为.【解析】分析:(1)通过直角三角形的边角关系,得出和,进而得出四边形材料的面积的表达式,再结合已知尺寸条件,确定角的范围.(2)根据正切的两角差公式和换元法,化简和整理函数表达式,最后由基本不等式,确定面积最小值及对应的点在上的位置.详解:解:(1)在直角中,因为,,所以,所以,在直角中,因为,,所以,所以,所以,.(2)因为,令,由,得,所以,当且仅当时,即时等号成立,此时,,,答:当时,四边形材料的面积最小,最小值为.点睛:本题考查三角函数的实际应用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化,注意换元法和基本不等式的合理运用.换元法求函数的值域,通过引入新变量(辅助式,辅助函数等),把所有分散的已知条件联系起来,将已知条件和要求的结果结合起来,把隐藏在条件中的性质显现出来,或把繁琐的表达式简化,之后就可以利用各种常见的函数的图象和性质或基本不等式来解决问题.常见的换元方法有代数和三角代换两种.要特别注意原函数的自变量与新函数自变量之间的关系.18、(1),;(2),.【解析】

(1)根据图像得A=2,利用,求ω值,再利用时取到最大值可求φ,从而得到函数解析式,进而求得对称轴方程;(2)由得,方程f(x)=2a﹣3有两个不等实根转为f(x)的图象与直线y=2a﹣3有两个不同的交点,从而可求得a的取值范围,利用图像的性质可得的值.【详解】(1)由图知,,解得ω=2,f(x)=2sin(2x+φ),当时,函数取得最大值,可得,即,,解得,又所以,故,令则,所以的对称轴方程为;(2),所以方程有两个不等实根时,的图象与直线有两个不同的交点,可得,当时,,有,故.【点睛】本题考查由y=Asin(ωx+φ)的部分图象确定函数解析式,考查函数y=Asin(ωx+φ)的图象及性质的综合应用,属于中档题.19、(1)时,最小值为;(2).【解析】

(1)利用向量的模长公式计算出的表达式然后求最值.

(2)先求出的坐标,利用向量平行的公式得到关于m的方程,可解得答案.【详解】(1)∵,

∴当时,取得最小值.(2).∵与共线,∴,则.【点睛】本题考查向量的模长的计算以及其最值和根据向量平行求参数的值,属于基础题.20、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】

(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;(Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直;(Ⅲ)由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点.【详解】(Ⅰ)证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.(Ⅱ)证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.(Ⅲ)存在点为中点时,满足平面;理由如下:分别取的中点,连接,在三角形中,且;在菱形中,为中点,所以且,所以且,即四边形为平行四边形,所以;又平面,平面,所以平面.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.21、(1)证明见解析;;(2)【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论