版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线的斜率为()A. B. C. D.2.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生 B.200号学生 C.616号学生 D.815号学生3.已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy4.等比数列,…的第四项等于(
)A.-24 B.0 C.12 D.245.已知函数,若存在,且,使成立,则以下对实数的推述正确的是()A. B. C. D.6.在锐角中,若,,,则()A. B. C. D.7.已知,并且是第二象限的角,那么的值等于()A. B. C. D.8.已知的内角、、的对边分别为、、,边上的高为,且,则的最大值是()A. B. C. D.9.若一个人下半身长(肚脐至足底)与全身长的比近似为5-12(5-12≈0.618A.身材完美,无需改善 B.可以戴一顶合适高度的帽子C.可以穿一双合适高度的增高鞋 D.同时穿戴同样高度的增高鞋与帽子10.不等式的解集是A. B.C.或 D.二、填空题:本大题共6小题,每小题5分,共30分。11.(理)已知函数,若对恒成立,则的取值范围为.12.在中,,,,则的面积等于______.13.已知是以为首项,为公差的等差数列,是其前项和,则数列的最小项为第___项14.已知函数,的最大值为_____.15.若数列满足,则_____.16.设数列的通项公式,则数列的前20项和为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的最小正周期;(2)求在区间上的最大值和最小值.18.求经过直线:与直线:的交点,且分别满足下列条件的直线方程.(Ⅰ)与直线平行;(Ⅱ)与直线垂直.19.如图,四棱锥中,底面,分别为的中点,.(1)证明:平面平面(2)求三棱锥的体积.20.已知三棱锥中,,.若平面分别与棱相交于点且平面.求证:(1);(2).21.如图,在四棱柱中,底面ABCD为菱形,平面ABCD,AC与BD交于点O,,,.(1)证明:平面平面;(2)求二面角的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
化直线方程为斜截式求解.【详解】直线可化为,∴直线的斜率是,故选:A.【点睛】本题考查直线方程,将一般方程转化为斜截式方程即可得直线的斜率,属于基础题.2、C【解析】
等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列,公差,所以,若,则,不合题意;若,则,不合题意;若,则,符合题意;若,则,不合题意.故选C.【点睛】本题主要考查系统抽样.3、D【解析】因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.4、A【解析】由x,3x+3,6x+6成等比数列得选A.考点:该题主要考查等比数列的概念和通项公式,考查计算能力.5、A【解析】
先根据的图象性质,推得函数的单调区间,再依据条件分析求解.【详解】解:是把的图象中轴下方的部分对称到轴上方,函数在上递减;在上递增.函数的图象可由的图象向右平移1个单位而得,在,上递减,在,上递增,若存在,,,,使成立,故选:.【点睛】本题考查单调函数的性质、反正切函数的图象性质及函数的图象的平移.图象可由的图象向左、向右平移个单位得到,属于基础题.6、D【解析】
由同角三角函数关系式,先求得,再由余弦定理即可求得的值.【详解】因为为锐角三角形,由同角三角函数关系式可得又因为,由余弦定理可得代入可得所以故选:D【点睛】本题考查了同角三角函数关系式应用,余弦定理求三角形的边,属于基础题.7、A【解析】
根据同角三角函数关系,进行求解即可.【详解】因为,故又因为是第二象限的角,故故.故选:A.【点睛】本题考查同角三角函数关系的简单使用,属基础题.8、C【解析】
由余弦定理化简可得,利用三角形面积公式可得,解得,利用正弦函数的图象和性质即可得解其最大值.【详解】由余弦定理可得:,故:,而,故,所以:.故选.【点睛】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.9、C【解析】
对每一个选项逐一分析研究得解.【详解】A.103103+72B.假设她需要戴上高度为x厘米的帽子,则103175C.假设她可以穿一双合适高度为y的增高鞋,则103+D.假设同时穿戴同样高度z的增高鞋与帽子,则103+故选:C【点睛】本题主要考查学生对新定义的理解和应用,属于基础题.10、B【解析】试题分析:∵,∴,即,∴不等式的解集为.考点:分式不等式转化为一元二次不等式.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:函数要使对恒成立,只要小于或等于的最小值即可,的最小值是0,即只需满足,解得.考点:恒成立问题.12、【解析】
先用余弦定理求得,从而得到,再利用正弦定理三角形面积公式求解.【详解】因为在中,,,由余弦定理得,所以由正弦定理得故答案为:【点睛】本题主要考查正弦定理和余弦定理的应用,还考查了运算求解的能力,属于中档题.13、【解析】
先求,利用二次函数性质求最值即可【详解】由题当时最小故答案为8【点睛】本题考查等差数列的求和公式,考查二次函数求最值,是基础题14、【解析】
化简,再利用基本不等式以及辅助角公式求出的最大值,即可得到的最大值【详解】由题可得:由于,,所以,由基本不等式可得:由于,所以所以,即的最大值为故答案为【点睛】本题考查三角函数的最值问题,涉及二倍角公式、基本不等式、辅助角公式等知识点,属于中档题。15、【解析】
由递推公式逐步求出.【详解】.故答案为:【点睛】本题考查数列的递推公式,属于基础题.16、【解析】
对去绝对值,得,再求得的前项和,代入=20即可求解【详解】由题的前n项和为的前20项和,代入可得.故答案为:260【点睛】本题考查等差数列的前项和,去绝对值是关键,考查计算能力,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)最大值为2,最小值为【解析】
(1)先将函数化简为,根据公式求最小正周期.
(2)由,则,可求出函数的最值.【详解】(1)所以的最小正周期为:.(2)由(1)有,则则当,即时,有最小值.当即,时,有最大值2.所以在区间上的最大值为2,最小值为.【点睛】本题考查三角函数化简、求最小正周期和函数在闭区间上的最值,属于中档题.18、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)先求得直线与直线的交点坐标.根据平行直线的斜率关系得与平行直线的斜率,再由点斜式即可求得直线方程.(Ⅱ)根据垂直直线的斜率关系得与垂直的直线斜率,再由点斜式即可求得直线方程.【详解】解方程组得,所以直线与直线的交点是(Ⅰ)直线,可化为由题意知与直线平行则直线的斜率为又因为过所以由点斜式方程可得化简得所以与直线平行且过的直线方程为.(Ⅱ)直线的斜率为则由垂直时直线的斜率乘积为可知直线的斜率为由题意知该直线经过点,所以由点斜式方程可知化简可得所以与直线垂直且过的直线方程为.【点睛】本题考查了直线平行与垂直时的斜率关系,由点斜式求方程的用法,属于基础题.19、(1)见证明;(2)【解析】
(1)先证明面,再证明平面平面;(2)由求解.【详解】(1)证明:由已知为的中点,且,所以,因为,所以,又因为,所以四边形为平行四边形,所以,又因为面,所以平面.在△中,因为,分别为,的中点,所以,因为,,所以面,因为,所以平面平面(2)由已知为中点,又因为,所以,因为,,,所以.【点睛】本题主要考查空间几何元素平行关系的证明,考查几何体体积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.20、(1)证明见解析;(2)证明见解析.【解析】
(1)利用线面平行的性质定理可得线线平行,最后利用平行公理可以证明出;(2)利用线面垂直的判定定理可以证明线面垂直,利用线面垂直的性质可以证明线线垂直,利用平行线的性质,最后证明出.【详解】证明(1)因为平面,平面平面,平面,所以有,同理可证出,根据平行公理,可得;(2)因为,,,平面,所以平面,而平面,所以,由(1)可知,所以.【点睛】本题考查了线面平行的性质定理,线面垂直的判定定理、以及平行公理的应用.21、(1)证明见解析;(2)﹒【解析】
(1)证面面垂直只需证一个平面内有一条直线和另一个平面垂直(2)通过作图需找二面角的平面角即可【详解】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年技术咨询合同标的与服务描述
- 2024年新一代移动通信技术合作合同
- 2024年房产预售资金监管合同
- 2024年新式中介租房合同
- 2024年度电机运行效率提升与优化合同
- 2024年度绿色能源开发与投资合作合同
- 2024年影视明星代言与广告拍摄合同
- 2024年新型环保材料研发与专利使用权购买合同
- 2024年城乡改造回迁房所有权转让协议
- DB4117T 169.32-2019 动物疫病流行病学调查技术规范 第32部分 狂犬病
- LED封装工艺流程图解
- 《中医药健康知识讲座》课件
- 中央团校培训心得体会
- 大沥废旧金属行业分析报告
- GB/T 27917.3-2023快递服务第3部分:服务环节
- 临床医学职业素养与职业道德培训课件
- 火灾逃生与自救技能培训
- 2022年6月青少年软件编程(Python)等级考试二级【答案版】
- 新高中历史课标思路15.5课件
- 煤气发生炉拆除方案
- 债权人自愿放弃债权承诺书
评论
0/150
提交评论