人教版七年级下册数学教案_第1页
人教版七年级下册数学教案_第2页
人教版七年级下册数学教案_第3页
人教版七年级下册数学教案_第4页
人教版七年级下册数学教案_第5页
已阅读5页,还剩160页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

5.1相交线5.1.1相交线1.理解对顶角和邻补角的概念,能在图形中辨认;(重点)2.掌握对顶角相等的性质和它的推证过程;(重点、难点)3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.一、情境导入同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行钢索,桥的侧面有许多相交钢索组成的图案;围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?二、合作探究探究点一:对顶角和邻补角的概念【类型一】对顶角的识别下列图形中∠1与∠2互为对顶角的是()解析:观察∠1与∠2的位置特征,只有C中∠1和∠2同时满足有公共顶点,且∠1的两边是∠2的两边的反向延长线.故选C.方法总结:判断对顶角只看两点:①有公共顶点;②一个角的两边分别是另一个角的两边的反向延长线.【类型二】邻补角的识别如图所示,直线AB和CD相交所成的四个角中,∠1的邻补角是________.解析:根据邻补角的概念判断:有一个公共顶点、一条公共边,另一边互为延长线.∠1和∠2、∠1和∠4都满足有一个公共顶点和一条公共边,另一边互为延长线,故为邻补角.故答案为∠2和∠4.方法总结:邻补角的定义包含了两层含义:相邻且互补.但需要注意的是:互为邻补角的两个角一定互补,但互补的角不一定是邻补角.探究点二:对顶角的性质【类型一】利用对顶角的性质求角的度数如图,直线AB、CD相交于点O,若∠BOD=42°,OA平分∠COE,求∠DOE的度数.解析:根据对顶角的性质,可得∠AOC与∠BOD的关系,根据OA平分∠COE,可得∠COE与∠AOC的关系,根据邻补角的性质,可得答案.解:由对顶角相等得∠AOC=∠BOD=42°.∵OA平分∠COE,∴∠COE=2∠AOC=84°.由邻补角的性质得∠DOE=180°-∠COE=180°-84°=96°.方法总结:解决此类问题的关键是在图中找出对顶角和邻补角,根据两种角的性质找出已知角和未知角之间的数量关系.【类型二】结合方程思想求角度如图,直线AC,EF相交于点O,OD是∠AOB的平分线,OE在∠BOC内,∠BOE=eq\f(1,2)∠EOC,∠DOE=72°,求∠AOF的度数.解析:因为已知量与未知量的关系较复杂,所以想到列方程解答,根据观察可设∠BOE=x,则∠AOF=∠EOC=2x,然后根据对顶角和邻补角找到等量关系,列方程.解:设∠BOE=x,则∠AOF=∠EOC=2x.∵∠AOB与∠BOC互为邻补角,∴∠AOB=180°-3x.∵OD平分∠AOB,∴∠DOB=eq\f(1,2)∠AOB=90°-eq\f(3,2)x.∵∠DOE=72°,∴90°-eq\f(3,2)x+x=72°,解得x=36°.∴∠AOF=2x=72°.方法总结:在相交线中求角的度数时,就要考虑使用对顶角相等或邻补角互补.若已知关系较复杂,比如出现比例或倍分关系时,可列方程解决角度问题.【类型三】应用对顶角的性质解决实际问题如图,要测量两堵墙所形成的∠AOB的度数,但人不能进入围墙,如何测量?请你写出测量方法,并说明几何道理.解析:可以利用对顶角相等的性质,把∠AOB转化到另外一个角上.解:反向延长射线OB到E,反向延长射线OA到F,则∠EOF和∠AOB是对顶角,所以可以测量出∠EOF的度数,∠EOF的度数就是∠AOB的度数.方法总结:解决此类问题的关键是根据对顶角的性质把不能测量的角进行转化.探究点三:与对顶角有关的探究问题我们知道:两直线交于一点,对顶角有2对;三条直线交于一点,对顶角有6对;四条直线交于一点,对顶角有12对……(1)10条直线交于一点,对顶角有________对;(2)n(n≥2)条直线交于一点,对顶角有________对.解析:(1)仔细观察计算对顶角对数的式子,发现式子不变的部分及变的部分的规律,得出结论,代入数据求解.如图①,两条直线交于一点,图中共有eq\f((4-2)×4,4)=2对对顶角;如图②,三条直线交于一点,图中共有eq\f((6-2)×6,4)=6对对顶角;如图③,四条直线交于一点,图中共有eq\f((8-2)×8,4)=12对对顶角……按这样的规律,10条直线交于一点,那么对顶角共有eq\f((20-2)×20,4)=90(对).故答案为90;(2)利用(1)中规律得出答案即可.由(1)得n(n≥2)条直线交于一点,对顶角的对数为eq\f(2n(2n-2),4)=n(n-1).故答案为n(n-1).方法总结:解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征.三、板书设计两条直线相交eq\b\lc\{\rc\}(\a\vs4\al\co1(邻补角,对顶角,对顶角相等))求角的大小本节课通过对学生身边熟悉的事物引入,让学生感受到生活中处处有数学,数学与我们的生活密不可分;学生经历合作探究过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,提升学生的能力,促进学生的发展5.1.1相交线教学目标1.理解对顶角和邻补角的概念,能在图形中辨认.2.掌握对顶角相等的性质和它的推证过程.3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.教学过程一、创设情境,引入课题问题:请同学们观察下面的图片,说一说那些道路是交错的,那些是平行的?教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题.二、目标导学,探索新知目标导学1:理解对顶角和邻补角的概念,并会在图形中进行辨别1.观察图片,注意剪刀剪开布片过程中有关角的变化.2.将剪刀抽象为几何图形并画一画.答:如图:几何语言描述图形:直线AB、CD相交于点O.概念:如果两条直线有一个公共点,就说这两条直线相交,公共点叫做这两条直线的交点。3.观察上图,同桌讨论。(1)两条直线相交组成几个角?(2)这两条直线相交得到哪几对角?(3)每对角中两个角的位置有怎样的关系?(4)根据它们的位置和度数的关系将这几对角进行分类.4.概念归纳(1)∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.(2)∠1与∠2是直线AB、CD相交得到的,有公共顶点O,且有一条公共边,像这样的两个角叫做邻补角.5.概念深化(1)找一找上图中还有没有对顶角,如果有,是哪两个角?(2)找一找上图中还有没有邻补角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.∠3与∠2、∠1与∠4、∠3与∠4也互为邻补角。6.初步应用例1:(1)下列图中的∠1与∠2是邻补角吗?为什么?【教师强调】邻补角的特点:①顶点相同;②有一条公共边,另一边互为反向延长线;③成对出现。(2)下列各图中∠1、∠2是对顶角吗?【教师强调】对顶角的特点:①顶点相同;②角的两边互为反向延长线;③成对出现的。(3)请分别画出下图中∠1的对顶角和∠2的邻补角.学习目标2:掌握对顶角的性质并会推导问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?1.动手操作,推出性质已知,直线AB与CD相交于O点(如图),试猜想∠1、∠3的大小关系,并借助量角器或其他方式验证你的想法.答:∠1=∠3.思考:你能用说理的方法推出∠1=∠3吗?解:

∵∠1与∠2互补,∠3与∠2互补(邻补角定义),

∴∠l=∠3(同角的补角相等).或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).教师提醒:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.2.性质归纳:对顶角相等.3.初步应用例1:如图,直线a、b相交,∠

1=40º,

求∠2,∠3,∠4的度数.解:∵∠1=∠3(对顶角相等),∠

1=40º(已知)

∴∠

3=40º

.又∵∠1+∠2=180º

(邻补角定义),∠

1=40º(已知)

∠2=∠4(对顶角相等)

∠4=∠

2=180º-

∠1

=140º​.4.变式练习学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.变式1:把∠l=40°变为∠2-∠1=40°变式2:把∠1=40°变为∠2

是∠l

的3倍变式3:把∠1=40°变为∠1:∠2=2:9.三、巩固训练,熟练技能1.(1)若∠1与∠2是对顶角,∠1=16º,则∠2=______º;

(2)若∠3与∠4是邻补角,则∠3+∠4

=______º.2.若∠1与∠2为对顶角,∠1与∠3互补,则∠2+∠3=

º.3.要测量两堵围墙所形成的∠AOB的度数,但人不能进入围墙,如何测量?四、归纳总结,板书设计五、课后作业,目标检测见本教辅同步内容【教学备注】【教师提示】教师统一学生观点并板书.【教学提示】学生以小组为单位展开讨论,选代表发言,并口答为什么.例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。【教学说明】要求学生能用文字语言说理,并让学生写出推理过程,由于本阶段对于推理的要求处在入门阶段,因此形式上可不做过分要求。【教学提示】表格中的结论均由学生自己口答填出.教学反思成功之处:本节课是在七年级上册学过线、角的有关知识的基础上,进一步研究两直线位置关系的第一课时.对顶角是几何求解、证明中的一个基本图形,其中对顶角相等也是证明中常用的结论,以此实现角之间的相互转化.内容相对简单,但又非常重要。对顶角的概念出来后,立即找到生活原型,以加强认识,联系生活.在辨别给出图形是否为对顶角的一组题目中,果然如课前所料,学生的几何语言运用不够熟练、严谨,我耐心地纠正,原因是几何开始一定要让学生重视几何语言的表述,养成学习几何的好习惯.在这个题目中我始终让学生对照定义辨别,加强认识.探究对顶角相等这个性质是本课时的重难点,所以我的设计是先画图量角,让学生有一个感性认识,同时让学生认识到度量是有误差的,所以叫学生记下读数,提出可不可以根据一个角的度数,计算出其对顶角的度数这样一个问题,其实这个问题设计是承上启下的,因为在证明时我听到他们说出“和刚才计算一样”的话.练习题的设置一来是巩固,二来时让学生体会转化思想.不足之处:本节课通过对比教学,学生对概念的理解及简单的一些推理说明基本能掌握,但可能是课堂上没有照顾到所有的学生导致部分学习有困难的孩子对推理说明类似的题目在解题过程中出现乱、繁等现象(个别学生甚至无法下手).课后要根据实际情况及时进行补差补缺,争取不让一个孩子掉对.5.1.2垂线1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线;(重点)2.掌握点到直线的距离的概念,并会度量点到直线的距离;3.掌握垂线的性质,并会利用所学知识进行简单的推理.(难点)一、情境导入大家都看到过跳水比赛,下面几幅图片中是几种不同的入水方式,你知道哪个图片中运动员获得的分数最高吗?在获得分数最高的图片中你知道运动员的身体和水面之间的关系吗?这节课我们将要学习有关这种关系的知识.二、合作探究探究点一:垂线的概念【类型一】利用垂直的定义求角的度数如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=150°,则∠3的度数为()A.30°B.40°C.50°D.60°解析:先根据邻补角关系求出∠2=180°-150°=30°,再由CO⊥DO得出∠COD=90°,最后由互余关系求出∠3=90°-∠2=90°-30°=60°.故选D.方法总结:两条直线垂直时,其夹角为90°;由一个角是90°也能得到这个角的两条边是互相垂直的.【类型二】垂直与对顶角、邻补角结合求角的度数如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.解析:首先根据垂直的概念得到∠BOD=90°,然后根据∠1与∠3是对顶角,∠2与∠3互为余角,从而求出角的度数.解:由题意得∠3=∠1=30°(对顶角相等).∵AB⊥CD(已知),∴∠BOD=90°,(垂直的定义),∴∠3+∠2=90°,即30°+∠2=90°,∴∠2=60°.方法总结:解决本题的关键是根据垂直的概念,得到度数为90°的角,然后根据对顶角、邻补角的性质解决.探究点二:垂线的画法(1)如图①,过点P画AB的垂线;(2)如图②,过点P分别画OA、OB的垂线;(3)如图③,过点A画BC的垂线.解析:分别根据垂线的定义作出相应的垂线即可.解:如图所示.方法总结:垂线的画法需要三步完成:一落:让三角板的一条直角边落在已知直线上,使其与已知直线重合;二移:沿直线移动三角板,使其另一直角边经过所给的点;三画:沿此直角边画直线,则这条直线就是已知直线的垂线.探究点三:垂线的性质(垂线段最短)如图,是一条河,C是河边AB外一点.现欲用水管从河边AB将水引到C处,请在图上画出应该如何铺设水管能让路线最短,并说明理由.解析:根据垂线的性质可解,即过C作CE⊥AB,根据“垂线段最短”可得CE最短.解:如图所示,沿CE铺设水管能让路线最短,因为垂线段最短.方法总结:在利用垂线的性质解决生活中最近、最短距离的问题时,要依据“两点之间,线段最短”和“垂线段最短”来解决.探究点四:点到直线的距离如图,在△ABC中,过点C作CD⊥AB,垂足为D,则点C到直线AB的距离是()A.线段CA的长B.线段CDC.线段AD的长D.线段CD的长解析:根据点到直线的距离的定义:直线外一点到直线的垂线段的长度叫做点到直线的距离,可得点C到直线AB的距离是线段CD的长.故选D.方法总结:点到直线的距离是直线外一点到直线的垂线段的长度,而不是垂线段.三、板书设计垂线eq\b\lc\{(\a\vs4\al\co1(垂线的定义,\b\lc\\rc\}(\a\vs4\al\co1(垂线的作法\b\lc\{(\a\vs4\al\co1(一落,二移,三画)),垂线的性质:垂线段最短))求最短距离))本节课主要研究两条直线相交时的特殊情况——垂直,可类比前面两条直线相交时的一般情况学习新知识.经历合作探究过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,使每个学生在数学的学习上都能得到不同的发展5.1.2垂线教学目标了解垂直概念;能说出垂线的性质“经过一点;能画出已知直线的一条垂线,并且只能画出一条垂线”;会用三角尺或量角器过一点画一条直线的垂线.重点:两直线互相垂直的有关性质.难点:过直线上(外)一点作已知直线的垂线.教学过程创设情境,引入课题生活中的垂线二、目标导学,探索新知目标导学1:垂直的定义活动1在相交线的模型中,固定木条a,转动木条b,当b的位置变化时,a、b所成的角α也会发生变化.当α=90°时,a与b垂直.当α≠90°时,a与b不垂直,叫斜交.1.垂直定义:当两条直线相交所成的四个角中,有一个角是直角(90°)时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。(说明)从垂直的定义可知,判断两条直线互相垂直的关键:只要找到两条直线相交时四个交角中有一个角是直角。垂直的表示:用“⊥”和直线字母表示垂直例如、如图,a、b互相垂直,垂足为O,则记为:a⊥b或b⊥a,若要强调垂足,则记为:a⊥b,垂足为O.或a⊥b于O.实际应用:日常生活中,两条直线互相垂直的情形很常见,说出图中的一些互相垂直的线条.你能再举出其他例子吗?试一试:1、下面四种判定两条直线垂直的方法,正确的有()个(1)两条直线相交所成的四个角中有一个角是直角,则这两条直线互相垂直(2)两条直线相交,只要有一组邻补角相等,则这两条直线互相垂直(3)两条直线相交,所成的四个角相等,这两条直线互相垂直(4)两条直线相交,有一组对顶角互补,则这两条直线互相垂直(A)4(B)3(C)2(D)12.如图,已知AOB为一直线,∠AOD:∠BOD=3:1,OD平分∠COB,(1)求∠AOC的度数;(2)判断AB与OC的位置关系.目标导学2:垂线的书写形式当直线AB与CD相交于O点,∠AOD=90°时,AB⊥CD,垂足为O.书写形式1:因为∠AOD=90°(已知)所以AB⊥CD(垂直的定义)反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90°书写形式2:.如图.直线AB、CD相交于点O,OE⊥AB于O,OB平分∠DOF,∠DOE=50°,求∠AOC、∠EOF、∠COF的度数.垂线的定义学习目标3:垂线的画法和垂线性质1活动2(一)画已知直线的垂线(1)如图1,已知直线m,作m的垂线。图1图2(2)如图2,已知直线m和m上的一点A,作m的垂线.(1)靠:把三角板的一直角边靠在直线上;(2)移:移动三角板到已知点;(3)画线:沿着三角板的另一直角边画出垂线.思考:(1)画已知直线m的垂线能画几条?(2)过直线m上的一点A画m的垂线,这样的垂线能画几条?(3)过直线m外的一点A画m的垂线,这样的垂线能画几条?试一试:过点p向线段AB所在直线引垂线,正确的是().垂线的性质1过一点有且只有一条直线与已知直线垂直。说明:(1)“过一点”包括几种情况?线上和线外;(2)“有且只有”是什么意思?存在性与唯一性。(二)过点P作线段或射线所在直线的垂线注意:过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.画线段(或射线)的垂线时,有时要将线段延长(或将射线反向延长)后再画垂线.试一试:如图,分别过A、B、C,作BC、AC、AB的垂线。如图,过P分别作OA、OB的垂线。学习目标3:垂线的性质活动3比较过直线m外一点O与m相交的所有线段中,哪一条最短?垂线的性质2直线外一点与直线上各点连结的所有线段中.垂线段最短.即:垂线段最短.点到直线的距离直线外一点到已知直线的垂线段的长度就叫做点到直线的距离.应用:在体育课上,老师是怎样测量同学们的跳远成绩的?你能尝试说明其中的理由吗?做法:将尺子拉直与踏板边所在直线垂直,取最近的脚印后跟与踏板边沿之间的距离就是跳远成绩.理由:直线外一点与直线上各点连结的所有线段中,垂线段最短.四、垂线的定义与性质的应用1.如图.直线AB、CD相交于点O,OE⊥AB于O,OB平分∠DOF,∠DOE=50°,求∠AOC、∠EOF、∠COF的度数.解:因为AB⊥OE(已知)所以∠EOB=90°(垂直的定义)因为∠DOE=50°(已知)所以∠DOB=40°(互余的定义)所以∠AOC=∠DOB=40°(对顶角相等)又因为OB平分∠DOF所以∠BOF=∠DOB=40°(角平分线定义)所以∠EOF=∠EOB+∠BOF=90°+40°=130°所以∠COF=∠COD-∠DOF=180°-80°=100°(邻补角定义)2.如图,一辆汽车在一段笔直的公路上从A村开往B村,P村不在路AB上.(1)如果有一人想在A、B两村之间下车,前往P村,他在哪里下车走的路程最短?请画出图形,并说明原因.(2)汽车在哪一段路上行驶时,与P村的距离越来越近?汽车在哪一段路上行驶时,与P村的距离越来越远?答案:(1)在O点下车走的路程最短.原因:垂线段最短.(2)在AO路段上行驶时,与P村的距离越来越近,在OB路段上行驶时,与P村的距离越来越远.3.下面四种判定两条直线的垂直的方法.正确的个数为()①两条直线相交所成的四个角中有一个角是直角.则这两条直线互相垂直②两条直线相交.只要有一组邻补角相等.则这两条直线互相垂直③两条直线相交.所成的四个角相等.这两条直线互相垂直④两条直线相交.有一组对顶角互补.则这两条直线互相垂直A.5B.4C.3D.2巩固训练,熟练技能1..两条直线相交所成的四个角中,下列条件中能判定两条直线垂直的是()(A)有两个角相等(B)有两对角相等(C)有三个角相等(D)有四对邻补角2.如图所示,在△ABC中,∠ABC=90,①过点B作三角形ABC的AC边上的高BD,过D点作三角形ABD的AB边上的高DE。②点A到直线BC的距离是线段__________的长度.点B到直线AC的距离是线段__________的长度.点D到直线AB的距离是线段__________的长度线段AD的长度是点________到直线_______的距离.如图AB⊥CD垂足为O,∠COF=56°,求∠AOE.4.如图:直线AB和CD相交于点O,OE⊥AB,OF⊥CD,∠BOF=40º,求∠DOE和∠AOC的度数.归纳总结,板书设计垂直的概念:如果两条直线相交所成的四个角中,有一个是直角,就说这两条直线互相垂直.垂线的性质1:同一平面内,经过一点有且只有一条直线与已知直线垂直.垂线的性质2:直线外一点与直线上各点连结的所有线段中.垂线段最短.五、课后作业,目标检测见本教辅同步内容【教学备注】【教学提示】引导学生通过木条的转动过程得出垂线的定义。【教学提示】对垂线概念进行小结。【教学提示】通过画垂线的过程,引导学生思考,得出性质1.教学反思垂线是平面几何所要研究的基本内容之一.垂线的概念、画法和性质是重要的基础知识,是进一步学习平面直角坐标系、三角形的高、切线的性质和判定、以及空间里的垂直关系等知识的基础,与其他数学知识一样,它在现实生活中有着广泛的应用.垂线的概念和性质,蕴含着“从一般到特殊”的认识规律,是培养学生思维能力的重要内容之一.垂线的概念和性质是本节课的重点,也是全章的内容之一;经过一点画已知直线的垂线,是本节课的一个难点,在这个地方应让学生多观察,多思考.让学生动手画一画,试一试.鼓励学生思考并在小组内交流,全班交流.教师引导学生总结以上两个结论.全班内交流成果.教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直.引导学生分清“互相垂直”与“垂线”的区别与联系:(1)“互相垂直”指两条直线的位置关系;(2)“垂线”是指其中一条直线对另一条直线的命名.

如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,

如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”.5.1.3同位角、内错角、同旁内角1.理解“三线八角”中没有公共顶点的角的位置关系,知道什么是同位角、内错角、同旁内角;2.通过比较、观察、掌握同位角、内错角、同旁内角的特征;(重点)3.能在复杂图形中正确识别图形中的同位角、内错角和同旁内角.(重点、难点)一、情境导入上一节课中我们主要学习两条直线相交的情况,两条直线相交时,可以形成哪几种角?如果两条直线被第三条直线所截时,还能形成以上的角吗?是否还有其他类型的角呢?你能说出它们的名字吗?二、合作探究探究点一:识别同位角【类型一】判断同位角及截线如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?解析:识别同位角要弄清哪两条直线被哪一条直线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.解:∠1和∠2是直线EF、DC被直线AB所截形成的同位角,∠1和∠3是直线AB、CD被直线EF所截形成的同位角.方法总结:①同位角中的“同”字有两层含义:一同是指两角在截线的同旁,二同是指它们在被截两直线同方向;②在表述“三线八角”中某种位置关系的角时,可用以下方法:“∠×和∠×是直线×和直线×被直线×所截形成的×角”.【类型二】在图形中判断同位角下列图形中,∠1和∠2不是同位角的是()解析:选项A、B、D中,∠1与∠2在截线的同侧,并且在被截线的同一方向,是同位角,即在图中可找到形如“F”的模型;选项C中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选C.方法总结:确定两个角的位置关系的有效方法——描图法:①把两个角在图中“描画”出来;②找到两个角的公共直线;③观察所描的角,判断所属“字母”类型,同位角为“F”型.【类型三】数同位角的对数如图,直线l1,l2被l3所截,则同位角共有()A.1对B.2对C.3对D.4对解析:图中同位角有:∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8,共4対.故选D.方法总结:数同位角的个数时,应从各个方向逐一观察,避免重复或漏数.探究点二:识别内错角、同旁内角如图,下列说法错误的是()A.∠A与∠B是同旁内角B.∠3与∠1是同旁内角C.∠2与∠3是内错角D.∠1与∠2是同位角解析:根据同位角、内错角、同旁内角的基本模型判断.A中∠A与∠B形成“U”型,是同旁内角;B中∠3与∠1形成“U”型,是同旁内角;C中∠2与∠3形成“Z”型,是内错角;D中∠1与∠2是邻补角,该选项说法错误.故选D.方法总结:在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”型,内错角的边构成“Z”型,同旁内角的边构成“U”型.如图所示,直线DE与∠O的两边相交,则∠O的同位角是________,∠8的同旁内角是________.解析:直线DE与∠O的两边相交,则∠O的同位角是∠5和∠2,∠8的同旁内角是∠1和∠O.故答案为∠5和∠2,∠1和∠O.易错点拨:找某角的同位角、同旁内角时,应从各个方位观察,避免漏数.三、板书设计三线八角eq\b\lc\{(\a\vs4\al\co1(同位角“F”型,内错角“Z”型,同旁内角“U”型))本节课以学生交流、合作、探究贯穿始终,在教学过程中,给学生的思考留下了足够的时间和空间,由学生自己去发现结论.学生在经历发现问题、探究问题、解决问题的过程中,对“三线八角”的概念准确理解并掌握.培养学生动手、合作、概括能力,同时也提高思维水平和探究能力5.2平行线及其判定5.2.1平行线1.了解平行线的概念及平面内两条直线相交或平行的两种位置关系;2.掌握平行公理以及平行公理的推论;(重点、难点)3.会用符号语言表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.(重点)一、情境导入数学来源于生活,生活中处处有数学,观察下面的图片,你发现了什么?以上的图片都有两条相互平行的直线,这将是我们这节课学习的内容.二、合作探究探究点一:平行线的概念下列说法中正确的有:________.(1)在同一平面内不相交的两条线段必平行;(2)在同一平面内不相交的两条直线必平行;(3)在同一平面内不平行的两条线段必相交;(4)在同一平面内不平行的两条直线必相交;(5)在同一平面内,两条直线的位置关系有三种:平行、相交和垂直.解析:根据平行线的概念进行判断.线段不相交,延长后不一定不相交,(1)错误;同一平面内,直线只有平行和相交两种位置关系,(2)(4)正确,(5)错误;线段是有长度的,不平行也可以不相交,(3)错误.故答案为(2)(4).方法总结:同一平面内,两条直线的位置关系只有两种:平行和相交.两条线段平行、两条射线平行是指它们所在的直线平行,因此,两条线段不相交不意味着它们所在的直线不相交,也就无法判断它们是否平行.探究点二:过直线外一点画已知直线的平行线如图所示,在∠AOB内有一点P.(1)过点P画l1∥OA;(2)过点P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样的关系.解析:用两个三角板,根据“同位角相等,两直线平行”来画平行线,然后用量角器量一量l1与l2相交的角,该角与∠O的关系为相等或互补.解:(1)(2)如图所示;(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.易错点拨:注意∠2与∠O是互补关系,解答时容易漏掉.探究点三:平行公理及其推论【类型一】应用平行公理及其推论进行判断有下列四种说法:(1)过直线外一点有且只有一条直线与这条直线平行;(2)同一平面内,过一点能且只能作一条直线与已知直线垂直;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短;(4)平行于同一条直线的两条直线互相平行.其中正确的个数是()A.1个B.2个C.3个D.4个解析:根据平行公理、垂线的性质进行判断.(1)过直线外一点有且只有一条直线与这条直线平行,正确;(2)同一平面内,过一点能且只能作一条直线与已知直线垂直,正确;(3)直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;(4)平行于同一条直线的两条直线互相平行,正确;正确的有4个.故答案为D.方法总结:平行线公理和垂线的性质两者比较相近,两者区别在于:对于平行线公理中,必须是过直线外一点可以作已知直线的平行线,但过直线上一点不能作已知直线的平行线,垂线的性质中,无论点在何处都能作出已知直线的垂线.【类型二】应用平行公理的推论进行论证四条直线a,b,c,d互不重合,如果a∥b,b∥c,c∥d,那直线a,d的位置关系为________.解析:由于a∥b,b∥c,根据平行公理的推论得到a∥c,而c∥d,所以a∥d.故答案为a∥d.方法总结:平行公理的推论是证明两条直线相互平行的理论依据.【类型三】平行公理推论的实际应用将一张长方形的硬纸片ABCD对折后打开,折痕为EF,把长方形ABEF平摊在桌面上,另一面CDFE无论怎样改变位置,总有CD∥AB存在,为什么?解析:根据平行公理的推论得出答案即可.解:∵CD∥EF,EF∥AB,∴CD∥AB.方法总结:利用平行公理的推论进行证明时,关键是找到与要证的两边都平行的第三条边进行说明.三、板书设计平行线eq\b\lc\{(\a\vs4\al\co1(概念,两条直线的位置关系:平行或相交,性质\b\lc\{(\a\vs4\al\co1(平行公理,平行公理的推论))))本节课以学生身边熟悉的事物引入,让学生感受到生活中处处有数学,数学与我们的生活密不可分.经历观察多媒体的演示和通过画图等操作,交流归纳与活动,进一步培养学生的空间想象能力 5.2.1平行线教学任务分析教学目标知识技能(1)在丰富的现实情境中,进一步了解两条直线的平行关系,掌握有关的符号表示.(2)会用三角尺、方格纸等画平行线,积累操作活动的经验.(3)在操作活动中,探索并了解平行线的有关性质(基本事实)数学思考在探究新知的过程中体验数学与现实世界的联系,感受从具体到抽象的数学过程.解决问题能够独立解决画平行线的问题,理解平行线的基本事实.情感态度培养学生的空间想象能力,以及逻辑推理能力,体验成功的快乐.重点1.了解平行线的定义,并能用符号表示.能借助三角板,方格纸等画平行线.2.探索平行线的基本性质(基本事实).难点探索平行线的基本性质教学流程安排活动流程图活动内容和目的活动1平行线的概念活动2生活中的平行线活动3平行线的基本性质活动4探究两条平行线与第三条直线平行时的结论活动5问题探究小结与作业通过演示木条的各个情况使学生归纳平行线的定义.通过生活中平行线的举例,加深理解平行线的定义.动手操作,自主探究,发现平行线的基本性质.通过几个问题的解决,使学生加深对平行线定义以及对平行线性质的理解,培养学生解决问题的能力.复习巩固.教学过程设计一、创设情境,探究平行线的概念活动1观察,分别将木条a、b、c钉在一起,并把它们想象成两端可以无限延伸的三条直线.转动直线a,直线a从在直线c的下侧与直线b相交逐步变为在上侧与b相交,想象一下在这个过程中,有没有直线a与直线b不相交的位置?学生活动设计:充分发挥学生的想象能力,把三个木条想象成三条直线,想象在转动过程中不相交的情况,进而描述两直线平行的定义.教师活动设计:在学生想象、描述的基础上引导学生进行归纳.在同一平面内,若直线a和b不相交,那么就称直线a和b平行,记作a//b.活动2你能举出生活中平行的例子吗?学生活动设计:学生进行想象,在生活中可以看做平行的生活实例,可能举出下列例子:滑雪板、正方体中的一些棱、运动跑道,等等.教师活动设计:本环节主要关注学生的举例,从举例中巩固学生对平行线的认识和理解.二、分组探究,探索平行公理和推论,培养学生的探究能力、合作、交流能力.活动3在活动木条a的过程中,有几个位置使得a与b平行;如图,经过点B画直线a的平行线,你能有几种方法?可以画几条?经过点C呢?(3)经过上述问题的解决,你能得到什么结论?学生活动设计:学生自主探索,动手操作,观察猜想,对于问题(1),可以发现在木条在转动的过程中,只有一个位置使得a与b平行;对于问题(2),可以考虑用小学中学过的画平行线的方法——使用三角板和直尺,如图所示:对于问题(3),经过画图操作,观察归纳,可以发现一个基本事实(平行公理):经过直线外一点,有且只有一条直线与已知直线平行.教师活动设计:教师在本环节主要关注学生:学生参与讨论的程度;学生遇到问题时,对待问题的态度;学生进行总结归纳时,语言的准确性和简洁性.主要培养学生的动手能力、观察能力、合情推理的能力与探究能力、合作、交流能力等.活动4问题:如图,若a//b,b//c,你能得到a//c吗?说明你的理由,从中你能得到什么?学生活动设计:学生独立思考,完成结论的探索和理由的说明,然后进行交流,在交流中发现问题,解决问题.教师活动设计:引导学生用几何语言进行说明,适时引入反证法(仅仅介绍,让学生认识到用这样的方法可以说明道理,而不要求会用这样的方法).假设a与c不平行,则可以设a与c相交于点O,又a//b,b//c,于是过O点有两条直线a和c都与b平行,于是和平行公理矛盾,所以假设不正确,因此a和c一定平行.在此环节主要培养学生的逻辑推理能力.三、拓展创新、应用提高,培养学生的应用意识,解决问题的能力.活动5问题探究问题1:如下图,AD∥BC,在AB上取一点M,过M画MN∥BC交CD于N,并说明MN与AD的位置关系,为什么?学生活动设计:学生动手操作,观察猜测,得出平行的结论,然后对平行的原因进行交流,发现AD//BC,MN//DC,根据平行于同一直线的两直线平行,可以得到AD//MN.教师活动设计:主要关注学生说理过程中语言的准确性,若学生感觉到困难可以适当提醒.〔解答〕略.问题2:在同一平面内有4条直线,问可以把这个平面分成几部分?学生活动设计:分组探究,小组讨论,发现问题,小组讨论解决,在学生研究结束后,每小组派一名代表进行交流,交流完成后完善自己的结果.学生经过探究可以发现:当4条直线两两平行时,可以把平面分成5部分;当4条直线中只有三条两两平行时,可以把平面分成8部分;当4条直线仅有两条互相平行时,可以把整个平面分成9部分或10部分;当4条直线中其中两条平行,另两条也平行时,可以把平面分成9部分;当4条直线任意两条都不平行时,可以把平面分成8或10或11部分;教师活动设计:本环节主要考察学生探究问题的能力,同时培养学生的合作与交流意识,在探究的过程中教师可以适当引导学生按一定的条件分类,比如按平行线的条数分或按交点的个数分类,让学生养成有序考虑问题的习惯.〔解答〕略四、小结与作业.小结:平行线的定义;平行公理以及推论;平行公理及推论的应用.作业:探究同一平面内n条直线最多可以把平面分成几部分;习题5.2第6、7、9题.5.2.1平行线【教学目标】1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论.3.会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.【教学重点与难点】重点:探索和掌握平行公理及其推论.难点:对平行线本质属性的理解,用几何语言描述图形的性质.课前准备分别将木条a、b与木条c钉在一起,做成图所示的教具.【教学过程】一、创设问题情境1.复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?2.教师演示教具.顺时针转动木条b两圈,让学生思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中,有没有直线b与c木相交的位置?3.教师组织学生交流并形成共识.转动b时,直线b与c的交点从在直线a上A点向左边距离A点很远的点逐步接近A点,并垂合于A点,然后交点变为在A点的右边,逐步远离A点.继续转动下去,b与a的交点就会从A点的左边又转动A点的左边……可以想象一定存在一个直线b的位置,它与直线a左右两旁都没有交点.二、平行线定义,表示法1.结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a与直线b不相交的位置,这时直线a与b互相平行.换言之,同一平面内,不相交的两条直线叫做平行线.直线a与b是平行线,记作“∥”,这里“∥”是平行符号.教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线.2.同一平面内,两条直线的位置关系教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.三、画图、观察、归纳概括平行公理及平行公理推论1.在转动教具木条b的过程中,有几个位置能使b与a平行?本问题是学生直觉直线b绕直线a外一点B转动时,有并且只有一个位置使a与b平行.2.用直线和三角尺画平行线.已知:直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?3.通过观察画图、归纳平行公理及推论.(1)由学生对照垂线的第一性质说出画图所得的结论.(2)在学生充分交流后,教师板书.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(3)比较平行公理和垂线的第一条性质.共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.4.归纳平行公理推论.(1)学生直观判定过B点、C点的a的平行线b、c是互相平行.(2)从直线b、c产生的过程说明直线b∥直线c.(3)学生用三角尺与直尺用平推方验证b∥c.(4)师生用数学语言表达这个结论,教师板书.结果两条直线都与第三条直线平行,那么这条直线也互相平行.结合图形,教师引导学生用符号语言表达平行公理推论:如果b∥a,c∥a,那么b∥c.(5)简单应用.练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗?请说明理由.本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范.四、作业1.课本P19.7,P20.11.2.选用课时作业设计.5.2.2平行线的判定第1课时平行线的判定1.掌握两直线平行的判定方法;(重点)2.了解两直线平行的判定方法的证明过程;3.灵活运用两直线平行的判定方法证明直线平行.(难点)一、情境导入怎样用一个三角板和一把直尺画平行线呢?动手画一画.二、合作探究探究点一:应用同位角相等,判断两直线平行如图,∠1=∠2=55°,∠3等于多少度?直线AB,CD平行吗?说明理由.解析:利用对顶角相等得到∠3=∠2,再由已知∠1=∠2,等量代换得到同位角相等,利用“同位角相等,两直线平行”即可得到AB与CD平行.解:∠3=55°,AB∥CD.理由如下:∵∠3=∠2,∠1=∠2=55°,∴∠1=∠3=55°,∴AB∥CD(同位角相等,两直线平行).方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F”型)相等,从而可以应用“同位角相等,两直线平行”.探究点二:应用内错角相等,判断两直线平行如图,已知BC平分∠ACD,且∠1=∠2,AB与CD平行吗?为什么?解析:根据BC平分∠ACD,∠1=∠2,可得∠2=∠BCD,然后利用“内错角相等,两直线平行”即可得到AB∥CD.解:AB∥CD.理由如下:∵BC平分∠ACD,∴∠1=∠BCD.∵∠1=∠2,∴∠2=∠BCD,∴AB∥CD(内错角相等,两直线平行).方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到内错角(“Z”型)相等,从而可以应用“内错角相等,两直线平行”.探究点三:应用同旁内角互补,判断两直线平行如图,∠1=25°,∠B=65°,AB⊥AC.AD与BC有怎样的位置关系?为什么?解析:先根据∠1=25°,∠B=65°,AB⊥AC得出∠B与∠BAD的关系,进而得出结论.解:AD∥BC.理由如下:∵∠1=25°,∠B=65°,AB⊥AC,∴∠BAD=90°+25°=115°.∵∠BAD+∠B=115°+65°=180°,∴AD∥BC.方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同旁内角(“U”型)相等,从而可以应用“同旁内角互补,两直线平行”.探究点四:平行线的判定方法的运用【类型一】利用平行线判定方法的推理格式判断如图,下列说法错误的是()A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥cD.若∠3+∠4=180°,则a∥c解析:根据平行线的判定方法进行推理论证.A选项中,若a∥b,b∥c,则a∥c,利用了平行公理,正确;B选项中,若∠1=∠2,则a∥c,利用了“内错角相等,两直线平行”,正确;C选项中,∠3=∠2,不能判断b∥c,错误;D选项中,若∠3+∠4=180°,则a∥c,利用了“同旁内角互补,两直线平行”,正确.故选C.方法总结:解决此类问题的关键是识别截线和被截线,找准同位角、内错角和同旁内角,从而判断出哪两条直线是平行的.【类型二】根据平行线的判定方法,添加合适的条件如图所示,要想判断AB是否与CD平行,我们可以测量哪些角?请你写出三种方案,并说明理由.解析:判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此答题.解:(1)可以测量∠EAB与∠D,如果∠EAB=∠D,那么根据“同位角相等,两直线平行”,得出AB与CD平行;(2)可以测量∠BAC与∠C,如果∠BAC=∠C,那么根据“内错角相等,两直线平行”,得出AB与CD平行;(3)可以测量∠BAD与∠D,如果∠BAD+∠D=180°,那么根据“同旁内角互补,两直线平行”,得出AB与CD平行.方法总结:解决此类问题的关键是找准同位角、内错角和同旁内角.三、板书设计平行线的判定eq\b\lc\{\rc\}(\a\vs4\al\co1(同位角相等,内错角相等,同旁内角互补))两直线平行平行线的判定是平行线内容的进一步拓展,是进一步学习平行线的有力工具,为学习平行线的性质、三角形、四边形等知识打下基础,在整个初中几何中占有非常重要的地位.学生虽然已经学了平行线的定义、平行公理,具备了探究直线平行的基础,但学生在文字语言、符号语言和图形语言之间的转换能力比较薄弱,在逻辑思维和合作交流的意识方面发展不够均衡,还需逐渐提高第1课时平行线的判定教学目标1、通过操作、观察、想象、推理、交流等活动推演出平行线的判定方法;2、会运用转化的思想将新问题转化为已知或者已解决的问题,体会数学的转化思维;3、会运用数学语言描述并证明平行线的判定方法,认识证明的必要性和证明过程的严密性,深刻理解直线平行的判定方法;4、灵活应用判定方法进行直线是否平行或者其它结论的推理判断。重点:理解直线平行的判定方法,并会根据判定方法进行简单的推理应用。难点:平行线判定方法的灵活运用和其推导过程中的转化思想的认识。教学过程创设情境,引入课题一个长方形工件,如果需要检验它是否符合设计要求,除了度量它的长和宽的尺寸外,还要检查各面的长宽是否分别平行,而这些实际问题如果根据平行线的定义去判断是不可能的,但又如何判断它们是否平行呢?二、目标导学,探索新知目标导学1:平行的判定方法活动1:如图,三根木条相交成∠1,∠2,固定木条b、c,转动木条a,观察∠1,∠2满足什么条件时直线a与b平行。直线a和b不平行直线a∥b得出结论:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.活动2图中,如果∠1=∠7,能得出AB∥CD吗?写出你的推理过程。由此你又得出怎样的平行判定?结论:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.活动3下图中,如果∠4+∠7=180°,能得出AB∥CD?结论:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行学习目标2:平行判定方法的灵活应用活动4学生讨论完成下面题目。如图,∠A=55°,∠B=125°,AD与BC平行吗?AB与CD平行吗?为什么?学习目标3:平行判定方法在生活中的应用应用1:在如图所示的图中,甲从A处沿东偏南55°方向行走,乙从B处沿东偏南35°方向行走,(1)他们所行道路可能相交吗?(2)当乙从B处沿什么方向行走,他们所行道路不相交?请说明其中的理由.应用2如图,有一座山,想从山中开凿一条隧道直通甲、乙两地;在甲地侧得乙为北偏东41.5º方向,如果甲、乙两地同时开工,那么从乙地出发应按北偏西______度施工。应用3一弯形轨道ABCD的拐角ABC=120º,那么当另一拐角BCD=_____________º时,AB//CD.巩固训练,熟练技能1.如图,(1)从∠1=∠2,可以推出_______∥________,理由是___________________。(2)从∠2=∠_______,可以推出c∥d,理由是_________________________。(3)如果∠1=75°,∠4=105°,可以推出______∥_______,理由是______________________。2、如图,已知∠1=75°,∠2=105°,问:AB与CD平行吗?为什么?3、如图,∠B=∠C,∠B+∠D=180°,那么BC与DE平行吗?为什么?答:____________,理由:∵∠B=∠C()∠B+∠D=180°()∴∠C+∠D=180°()∴BC∥DE(四、归纳总结,板书设计两条直线平行的判断方法:定义法:在同一平面内,不相交的两条直线叫做平行线。如果两条直线都垂直于第三条直线,那么这两条直线互相平行..同位角相等,两直线平行..内错角相等,两直线平行..同旁内角互补,两直线平行.五、课后作业,目标检测见见本教辅同步内容【教学备注】【教师提示】引导学生去发现,两直线之所以平行,是因为同位角相等,进而引导学生用文字述叙概括出判定两直线平行的方法。【教师提示】引导学生利用判定1:同位角相等,两直线平行和对顶角相等得出结论。【教学提示】引导学生利用判定1:同位角相等,两直线平行和邻补角互补得出结论。好的方面:1、课堂上在与学生的对话和让学生回答问题时,有意识地锻炼学生使用规范性的几何语言。2.注重由学生从临摹书写到自主书写,锻炼学生的动手能力。3.教师自己板书规范完整,这样给学生起着示范作用.

不足之处:1、课堂的处理应变能力还需提高。有些题的研究时间过长,使后一阶段学生的思考时间较紧,由于时间关系,学生没有充分思考,虽然学生踊跃举手,但毕竟其他学生没有参与的机会,在今后备课中,继续要充分考虑到这一点。让学生在课堂上有更多的自主学习时间,让学生在实践活动中锻炼成长。2、板书还要精心布置和设计。3、没有兼顾到学生的差异,因为时间没有安排好如果在分析的环节不同层次的学生能够同伴互助,那么课堂的实效性将更充分体现。第2课时平行线判定方法的综合运用1.灵活选用平行线的判定方法进行证明;(重点)2.掌握平行线的判定在实际生活中的应用.(难点)一、情境导入如图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?要解决这个问题,就要弄清楚平行的判定.二、合作探究探究点一:平行线判定方法的综合运用【类型一】灵活选用判定方法判定平行如图,有以下四个条件:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,其中能判定AB∥CD的条件有()A.1个B.2个C.3个D.4个解析:根据平行线的判定定理即可求得答案.①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD.∴能得到AB∥CD的条件是①③④.故选C.方法总结:要判定两直线是否平行,首先要将题目给出的角转化为这两条直线被第三条直线所截得的同位角、内错角或同旁内角,再看这些角是否满足平行线的判定方法.【类型二】平行线的判定定理结合平行公理的推论进行证明如图,直线AB、CD、EF被直线GH所截,∠1=70°,∠2=110°,∠2+∠3=180°.求证:(1)EF∥AB;(2)CD∥AB(补全横线及括号的内容).证明:(1)∵∠2+∠3=180°,∠2=110°(已知),∴∠3=70°().又∵∠1=70°(已知),∴∠1=∠3(),∴EF∥AB().(2)∵∠2+∠3=180°,∴______∥______().又∵EF∥AB(已证),∴______∥______().解析:(1)先将∠2=110°代入∠2+∠3=180°,求出∠3=70°,根据等量代换得到∠1=∠3,再由“内错角相等,两直线平行”即可得到EF∥AB;(2)先由“同旁内角互补,两直线平行”得出CD∥EF,再根据“两条直线都和第三条直线平行,那么这两条直线平行”即可得到CD∥AB.答案分别为:(1)等量代换;等量代换;内错角相等,两直线平行;(2)CD;EF;同旁内角互补,两直线平行;CD;AB;平行于同一条直线的两直线平行.方法总结:判定两条直线平行的方法除了利用平行线的判定定理外,有时需要结合运用“平行于同一条直线的两条直线平行”.【类型三】添加辅助线证明平行如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.解析:通过观察图可以猜想AB与CD互相平行.过点F向左作FQ,使∠MFQ=∠2=50°,则可得∠NFQ=40°,再运用两次平行线的判定定理可得出结果.解:过点F向左作FQ,使∠MFQ=∠2=50°,则∠NFQ=∠MFN-∠MFQ=90°-50°=40°,AB∥FQ.又因为∠1=140°,所以∠1+∠NFQ=180°,所以CD∥FQ,所以AB∥CD.方法总结:在解决与平行线相关问题时,有时需作出适当的辅助线.探究点二:平行线判定的实际应用一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上行驶,那么两次拐弯的角度可能为()A.第一次右拐60°,第二次右拐120°B.第一次右拐60°,第二次右拐60°C.第一次右拐60°,第二次左拐120°D.第一次右拐60°,第二次左拐60°解析:汽车两次拐弯后,行驶的路线与原路线一定不在同一直线上,但方向相同,说明前后路线应该是平行的.如图,如果第一次向右拐,那么第二次应左拐,两次拐的方向是相反且角度相等的,两次拐的角度是同位角,所以前后路线平行且行驶方向不变.故选D.方法总结:利用数学知识解决实际问题,关键是将实际问题正确地转化为数学问题,即画出示意图或列式表示,然后再解决数学问题,最后回归实际.三、板书设计平行线的判定方法:1.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;2.平行于同一条直线的两直线平行.在教学设计中,突出学生是学习的主体,把问题尽量抛给学生解决,有意识地对学生渗透“转化”思想,并将数学学习与生活实际联系起来.本节课对七年级的学生而言,本是一个艰难的起步,应时时提醒学生应注意的地方,证明要严谨,步步有依据,并且依据只能是有关概念的定义、所规定的公理及已知证明的定理,防止学生不假思索地把以前学过的结论用来作为证明的依据5.3平行线的性质5.3.1平行线的性质第1课时平行线的性质1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)一、情境导入窗户内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点一:平行线的性质如图,AB∥CD,BE∥DF,∠B=65°,求∠D的度数.解析:利用“两直线平行,内错角相等,同旁内角互补”的性质可求出结论.解:∵AB∥CD,∴∠BED=∠B=65°.∵BE∥FD,∴∠BED+∠D=180°,∴∠D=180°-∠BED=180°-65°=115°.方法总结:已知平行线求角度,应根据平行线的性质得出同位角相等,内错角相等,同旁内角互补.再结合已知条件进行转化.探究点二:平行线与角平分线的综合运用如图,DB∥FG∥EC,∠ACE=36°,AP平分∠BAC,∠PAG=12°,求∠ABD的度数.解析:先利用GF∥CE,易求∠CAG,而∠PAG=12°,可求得∠PAC=48°.由AP是∠BAC的角平分线,可求得∠BAP=48°,从而可求得∠BAG=∠BAP+∠PAG=48°+12°=60°,即可求得∠ABD的度数.解:∵FG∥EC,∴∠CAG=∠ACE=36°.∴∠PAC=∠CAG+∠PAG=36°+12°=48°.∵AP平分∠BAC,∴∠BAP=∠PAC=48°.∵DB∥FG,∴∠ABD=∠BAG=∠BAP+∠PAG=48°+12°=60°.方法总结:(1)利用平行线的性质可以得出角之间的相等或互补关系,利用角平分线的定义,可以得出角之间的倍分关系;(2)求角的度数,可把一个角转化为一个与它相等的角或转化为已知角的和差.探究点三:平行线性质的探究应用如图,已知∠ABC.请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC边与点P.探究:∠ABC与∠DEF有怎样的数量关系?并说明理由.解析:先根据题意画出图形,再根据平行线的性质进行解答即可.解:∠ABC与∠DEF的数量关系是相等或互补.理由如下:如图①,因为DE∥AB,所以∠ABC=∠DPC.又因为EF∥BC,所以∠DEF=∠DPC,所以∠ABC=∠DEF.如图②,因为DE∥AB,所以∠ABC+∠DPB=180°.又因为EF∥BC,所以∠DEF=∠DPB,所以∠ABC+∠DEF=180°.故∠ABC与∠DEF的数量关系是相等或互补.方法总结:画出满足条件的图形时,必须注意分情况讨论,即把所有满足条件的图形都要作出来.三、板书设计eq\a\vs4\al(平行线,的性质)eq\b\lc\{\rc\}(\a\vs4\al\co1(两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补))eq\a\vs4\al(求角的大小或,说明角之间的,数量关系)平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学第1课时平行线的性质教学任务分析教学目标知识技能(1)掌握平行线的三个性质,能够进行简单的推理;(2)初步理解命题的含义,能够辨别简单命题的题设和结论;数学思考在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力.解决问题使学生能够顺利解决与平行线性质相关的计算和推理问题.情感态度让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度.重点平行线的三个性质的探索.难点平行线三个性质的应用.教学流程安排活动流程图活动内容和目的试验活动1问题讨论活动2总结平行线的性质活动3对性质的理解活动4解决问题小结与作业通过两个试验,初步感受两直线平行,同位角相等的事实.通过问题,让学生自主讨论平行线的性质.师生对平行线的性质共同总结.拓展创新、应用提高,引导学生运用知识解决问题,培养学生思维的灵活性和深刻性.复习巩固.教学过程设计【教学过程】一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容.试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等.这个结论是否具有一般性呢?试验2:学生试验(发印制好的平行线纸单).(1)要求学生任意画一条直线c与直线a、b相交;(2)选一对同位角来度量,看看这对同位角是否相等.学生归纳:两条平行线被第三条直线所截,同位角相等.二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识.活动1问题讨论:我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角.我们已经知道“两条平行线被第三条直线所截,同位角相等”.那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答).教师活动设计:引导学生讨论并回答.学生口答,教师板书,并要求学生学习推理的书写格式.活动2总结平行线的性质.性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.性质3:两条平行直线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.活动3如何理解并记忆性质2、3,谈谈你的看法!abab3c124(2)它与前面学习的平行线的判定有什么区别?(3)性质2、3的应用格式.∵a//b(已知)∴∠3=∠2(两直线平行,内错角相等).∵a//b(已知)∴∠2+∠4=180°(两直线平行,同旁内角互补).三、拓展创新、应用提高,引导学生运用知识解决问题,培养学生思维的灵活性和深刻性活动4解决问题.问题1:如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A=115°,∠D=100°.请你求出另外两个角的度数.(梯形的两底是互相平行的)AADBC学生活动设计:学生思考后请学生回答,注意启发学生回答为什么,进一步细化为较为详细的推理,并书写出.〔解答〕因为ABCD是梯形.所以AD//BC.所以∠A+∠B=180°,∠D+∠C=180°.又∠A=115°,∠D=100°.所以∠B=65°,∠C=80°.问题2:如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角B等于142°,第二次拐的角C是多少度?为什么?学生活动设计:学生根据拐弯前后的两条路互相平行容易得到∠B和∠C相等,于是得到∠C=142°问题3:.(1)∠1、∠3的大小有什么关系?∠2与∠4呢?(2)反射光线BC与EF也平行吗?学生活动设计:从图中可以看出:∠1与∠3是同位角,因为AB与DE是平行的,所以∠1=∠3.又因为∠1=∠2,∠3=∠4,所以可得出∠2=∠4.又因为∠2与∠4是同位角,所以BC∥EF.教师活动设计:这个问题是平行线的特征与直线平行的条件的综合应用.由两直线平行,得到角的关系用到的是平行线的特征;反过来,由角的关系得到两直线平行,用到的是直线平行的条件.同学们要弄清这两者的区别.〔解答〕略.问题4:如图,若AB//CD,你能确定∠B、∠D与∠BED的大小关系吗?说说你的看法.学生活动设计:由于有平行线,所以要用平行的知识,而∠B、∠D与∠DEB这三个角不是三类角中的任何一类,因此要考虑构造图形,若过点E作EF//AB,则由AB//CD得到EF//CD,于是图中出现三条平行线,同时出现了三类角,根据平行线的性质可以得到:∠B=∠BEF、∠D=∠DEF,因此∠B+∠D=∠BEF+∠DEF=∠DEB.教师活动设计:在学生探索的过程中,特别是构造图形这个环节,适当引导,让学生养成“缺什么补什么”的意识,培养学生的逻辑推理能力.〔解答〕过点E作EF//AB.所以∠B=∠BEF.因为AB//CD.所以EF//CD.所以∠D=∠DEF.所以∠B+∠D=∠BEF+∠DEF=∠DEB.即∠B+∠D=∠DEB.变式思考:如图,AB//CD,探索∠B、∠D与∠BED的大小关系(∠B+∠D+∠DEB=360°).四、小结与作业.小结:1.平行线的三个性质:两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.2.平行线的性质与平行线的判定有什么区别?判定:已知角的关系得平行的关系.证平行,用判定.性质:已知平行的关系得角的关系.知平行,用性质.作业:习题5.3.第2课时平行线的性质和判定及其综合运用1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF∥AB.(1)CE与DF平行吗?为什么?(2)若∠DCE=130°,求∠DEF的度数.解析:(1)由∠1+∠DCE=180°,∠1+∠2=180°,可得∠2=∠DCE,即可证明CE∥DF;(2)由平行线的性质,可得∠CDF=50°.由DE平分∠CDF,可得∠CDE=eq\f(1,2)∠CDF=25°.最后根据“两直线平行,内错角相等”,可得到∠DEF的度数.解:(1)CE∥DF.理由如下:∵∠1+∠2=180°,∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;(2)∵CE∥DF,∠DCE=130°,∴∠CDF=180°-∠DCE=180°-130°=50°.∵DE平分∠CDF,∴∠CDE=eq\f(1,2)∠CDF=25°.∵EF∥AB,∴∠DEF=∠CDE=25°.方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF∥AC,∠C=∠D,CE与BD有怎样的位置关系?说明理由.解析:由图可知∠AB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论