版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1统计分析的基本概念
3.1.1数据处理中的基本术语3.1.2样本的数字特征3.1.3统计分析的一般步骤(复习)第一页,共67页。3.1.1数据分析中的基本术语
准确度和精密度——分析结果的衡量指标
准确度──分析结果与真实值的接近程度准确度的高低用误差的大小来衡量误差一般用绝对误差和相对误差来表示精密度──几次平衡测定结果相互接近程度精密度的高低用偏差来衡量,偏差是指个别测定值与平均值之间的差值两者的关系:精密度是保证准确度的先决条件精密度高不一定准确度高两者的差别主要是由于系统误差的存在
第二页,共67页。
精密度及其计算
1、平均偏差
平均偏差又称算术平均偏差,用来表示一组数据的精密度。
平均偏差:
特点:简单缺点:大偏差得不到应有反映第三页,共67页。2、标准偏差
相对标准偏差:(变异系数)CV%=S/X
标准偏差又称均方根偏差分两种:
⑴当测定次数趋于无穷大时
标准偏差:μ为无限多次测定的平均值(总体平均值);即
当消除系统误差时,μ即为真值
⑵有限测定次数标准偏差:第四页,共67页。例题用标准偏差比用平均偏差更科学更准确.例:两组数据
⑴
0.11,-0.73,0.24,0.51,-0.14,0.00,0.30,-0.21,
n=8d1=0.28S1=0.38⑵0.18,0.26,-0.25,-0.37,0.32,-0.28,0.31,-0.27
n=8d2=0.28S2=0.29
d1=d2,S1>S2第五页,共67页。3、平均值的标准偏差m个n次平行测定的平均值:当n大于5时,SX(即Sx(平均))
/S(即Sx
)变化不大,实际测定5次即可。以x±SX
(即Sx(平均))的形式表示分析结果更合理(实际以x±t·Sx(平均)表示更合理,但常常t被粗略地记为1)。由统计学可得:
由SX/(即Sx(平均))/Sx(即S)——n作图:第六页,共67页。4、置信度与置信区间偶然误差的正态分布曲线:第七页,共67页。置信度与置信区间S有限次测定的标准偏差;n.测定次数
对于有限次测定,平均值与总体平均值关系为:第八页,共67页。置信度与置信区间讨论:1.置信度不变时:n增加,t变小,置信区间变小;2.n不变时:置信度增加,t变大,置信区间变大;置信度——真值在置信区间出现的几率(P);置信水准——
α=1-P置信区间——以平均值为中心,真值出现的范围;第九页,共67页。5、有效数字及运算法则⑴有效数字
实验过程中常遇到两类数字:数目:如测定次数;倍数;系数;分数测量值或计算值。数据的位数与测定准确度有关。记录的数字不仅表示数量的大小,而且要反映测量的精确程度。有效数字的定义:实际上能测量到的数字;末位数欠准(±1)
第十页,共67页。有效数字实际上能测量到的数字;末位数欠准(±1)。结果绝对误差相对误差有效数字位数0.51800±0.00001±0.002%50.5180±0.0001±0.02%40.518±0.001±0.2%3第十一页,共67页。
实验数据的记录
容量器皿;滴定管;移液管;容量瓶;4位有效数字分析天平(万分之一)取4位有效数字标准溶液的浓度,用4位有效数字表示:0.1000mol/LpH4.34,小数点后的数字位数为有效数字位数对数值,lgX=2.38;lg(2.4102)第十二页,共67页。(2)有效数字的运算规则加减运算
结果的位数取决于绝对误差最大的数据的位数
例:0.0121绝对误差:0.000125.640.011.0570.00126.7091第十三页,共67页。乘除运算有效数字的位数取决于相对误差最大的数据的位数。
例:(0.03255.10360.0)/139.8=0.0711791840.0325±0.0001/0.0325100%=±0.3%5.103±0.001/5.103100%=±0.02%60.06±0.01/60.06100%=±0.02%139.8±0.1/139.8100%=±0.07%第十四页,共67页。
数字修约规则过去沿用“四舍五入”,见五就进,能引入明显的舍入误差(误差累计),使修约后的数值偏高。“四舍六入五成双”规则是逢五有舍、有入,使由五的舍、入引起的误差,可以自相抵消,因而更为合理,因此,国家对数字修约的标准采用此规则。
第十五页,共67页。(1)规则:四舍六入五成双(或尾留双)例将下列测量值按数字修约规则,修约为三位数。
4.135修约为4.14;4.125为4.12;4.105为4.10(0以偶数计);
4.1251为4.13;4.1250为4.12(五后非零数的处理)4.1349为4.13
第十六页,共67页。⑵
不允许分次修约
例,4.1349修约为三位数。不能先修约成4.135,再修约为4.14,只能修约成4.13。第十七页,共67页。⑶可先多保留一位有效数字,运算后再修约。5.3527+2.3+0.055+3.355.35+2.3+0.05+3.35=11.0511.0⑷对标准偏差的修约S=0.213二位:0.22;一位:0.3第十八页,共67页。⑸注意点:
①“0”的双重性:有效数字和定位. 20.30;0.02030;2.030×10-2
②变换单位位数不变:20.30mg;
2.030×104μg
③首位数>8:位数多计一位。
8.6;99.2%
④对数:有效数字以尾数为准。
pH11.02[H+]=9.6×10-12
⑤实验记录数据:只保留一位欠准数字第十九页,共67页。
总体:研究对象的全体。
样本:从总体中抽出的一部分样品。3.1.2样本的数字特征
统计分析的目的:样本总体
第二十页,共67页。
均值:
极差:
标准偏差:3.1.2样本的数字特征甲:乙:2.9,2.9,3.0,3.1,3.12.7,2.8,3.0,3.2,3.3第二十一页,共67页。
相对标准偏差:
平均标准偏差:样本的数字特征变异系数
均值:
极差:
标准偏差:样本的数字特征
(EXCEL-工具-数据分析–描述统计)第二十二页,共67页。第二十三页,共67页。3.1.3统计分析的一般步骤第二十四页,共67页。被检验的假设称为原假设或零假设H0,而把原假设的对立面称为对立假设或备择假设,记为H1。为了检验是否正确,是先假设正确,根据分析计算的统计量如果出现不合理的结果,则判断不正确,则拒绝H0,接受H1。基于小概率事件原理。对所谓的小概率,习惯上使用一个指标,称为显著性水平(significancelevel)。基于这种原理的检验称为显著性检验。第二十五页,共67页。第二十六页,共67页。几个基本问题
1.检验假设:零假设(H0)和备择假设(H1)2.检验类型:单侧、双侧单尾、双尾3.误差类型:Ⅰ、Ⅱα、β4.检验结果:NS、S接受、否定H0否定、接受H1第二十七页,共67页。2.检验类型:第二十八页,共67页。不同检验类型H
的格式
H1 < ≠ >否定H0的区域1(左边)2(两边)1(右)检验类型单侧双侧
单侧
第二十九页,共67页。3.误差类型:Ⅰ、Ⅱ或α、β
第三十页,共67页。4.检验结果:NS、S接受、否定H0(P>0.05)否定、接受H1(P<0.05)
P的意义:概率PistheprobabilityofobservingthegivenresultsbychancegiventhatH0istrue.
P大,H0成立的概率大;P小,H0不成立,H1成立.若取α=0.05,P>0.05,NS;P<0.05,S第三十一页,共67页。
3.2实验数据的误差及分布
3.2.1测试误差的分类和特点(一)系统误差
1.特点:
(1)对分析结果的影响比较恒定;(2)在同一条件下,重复测定,重复出现;(3)影响准确度,不影响精密度;(4)可以采取措施消除。
产生的原因?
第三十二页,共67页。2.产生的原因(1)方法误差——选择的方法不够完善例:重量分析中沉淀的溶解损失滴定分析中指示剂选择不当(2)仪器误差——仪器本身的缺陷例:天平两臂不等,砝码未校正滴定管,容量瓶未校正(3)试剂误差——所用试剂有杂质例:去离子水不合格试剂纯度不够;(含待测组份或干扰离子)(4)主观误差——操作人员主观因素造成例:对指示剂颜色辨别偏深或偏浅
滴定管读数不准第三十三页,共67页。(二)偶然误差
1.特点:(1)不恒定;(2)难以校正;(3)服从正态分布2.产生的原因偶然因素
读数(三)过失误差第三十四页,共67页。
误差的减免(一)系统误差的减免
1.方法误差——采用标准方法,对比实验2.仪器误差——校正仪器3.试剂误差——作空白实验(二)偶然误差的减免
——增加平行测定的次数第三十五页,共67页。
定量分析数据的评价
解决两类问题:1.可疑数据的取舍
过失误差的判断方法:Q检验法;格鲁布斯(Grubbs)检验法。确定某个数据是否可用。2.分析方法的准确性系统误差的判断
显著性检验:利用统计学的方法,检验被处理的问题是否存在统计上的显著性差异
方法:t检验法和F检验法;确定某种方法是否可用,判断实验室测定结果准确性。第三十六页,共67页。
(5)根据测定次数和要求的置信度,(如90%)查表:表1--2不同置信度下,舍弃可疑数据的Q值表测定次数Q90
Q95
Q99
30.940.980.9940.760.850.9380.470.540.63(6)将Q与QX(如Q90)相比,若Q>QX舍弃该数据,(过失误差造成)若Q<QX舍弃该数据,(偶然误差所致)当数据较少时舍去一个后,应补加一个数据.可疑数据的取舍过失误差的判断1.Q检验法步骤:
(1)数据排列X1
X2
……
Xn(2)求极差Xn-
X1
(3)求可疑数据与相邻数据之差
Xn-
Xn-1或
X2-X1(4)计算:第三十七页,共67页。2.格鲁布斯(Grubbs)检验法
(4)由测定次数和要求的置信度,查表得G表;(5)比较;若G计算>G表,弃去可疑值,反之保留。由于格鲁布斯(Grubbs)检验法引入了标准偏差,故准确性比Q检验法高
基本步骤:(1)排序:X1,X2,
X3,
X4……;(2)求X和标准偏差S;(3)计算G值;第三十八页,共67页。3.2.2分析测试中的误差传递1、系统误差的传递若定量分析中各步测量误差是可定的,则系统误差传递的规律可概括为:①和、差的绝对误差等于各测量值绝对误差的和、差;②积、商的相对误差等于各测量值相对误差的和、差。⑴R=x+y-zδR=δx+δy-δz⑵R=xy/zδR/R=δx/x+δy/y-δz/z例:减重法称量滴定管读数第三十九页,共67页。2、偶然误差的传递极值误差法⑴R=x+y-z△R=│△x│+│△y│+│△z│
⑵R=xy/z△R/R=│△x/x│+│△y/y│+│△z/z│标准误差法:1)和、差结果的标准偏差的平方等于各测量值的标准偏差的平方和。2)积、商结果的相对标准偏差的平方等于各测量值相对标准偏差的平方和。例:样品含量计算第四十页,共67页。第四十一页,共67页。第四十二页,共67页。第四十三页,共67页。3.2.3误差的正态分布和t分布偶然误差的分布曲线:正态(μ)分布(n>30)t分布(n<30)第四十四页,共67页。3.2.3误差的正态分布和t分布
第四十五页,共67页。
统计量正态分布(n>30)x
t分布(有限次数:n=3~5)Sx
平均值的精密度和置信区间平均值的精密度--标准偏差第四十六页,共67页。某样品测试次数100次,平均含量为215,
试求:含量测定结果>250的概率;统计意义上含量测定结果在200~250之间的概率;占测定次数95%的含量范围。例题:误差的正态分布和t分布因测定次数为100,可按正态分布进行统计检验。查附表3-2,得
解:因本次统计试验为单侧试验,故含量测定的结果>250的概率为0.16第四十七页,共67页。~250之间的概率为:测定结果在200占测定次数95%的含量范围应为:例解解:统计意义上含量测定结果在200占测定次数95%的含量范围。
250之间的概率;~查表得第四十八页,共67页。3.3平均值的统计检验----系统误差的判断
1、u检验(n>30或已知符合正态分布)第四十九页,共67页。3.3平均值的统计检验----系统误差的判断
b.由要求的置信度(一般为95%,即α=0.05)和测定次数,查表,得:
t表
c.
比较
t计>
t表,
表示有显著性差异,存在系统误差,被检验方法需要改进。
t计<
t表,
表示无显著性差异,被检验方法可以采用。1、u检验(n>30)2.t检验–准确度差别检验(而方差分析(如F检验)-精密度差别检验)
⑴样本平均值与标准值()的比较
a.计算t值第五十页,共67页。(2)两组数据的平均值比较(同一试样)t检验法
比较新方法--经典方法(标准方法)比较两个分析人员测定的两组数据比较两个实验室测定的两组数据a.求合并的标准偏差:也可由两组数据的平均值计算第五十一页,共67页。c.查表(自由度f=f
1+f
2=n1+n2-2),比较:
t计>
t表,表示有显著性差异b.计算t值:第五十二页,共67页。第五十三页,共67页。两个均值比较例3-8甲:乙:,问:这两个实验室的测定结果有无显著性差异?解:结论:95%置信水平上二组数据不存在显著性差异,既可认为两个实验室的测定统计意义上不存在显著性差异。第五十四页,共67页。第五十五页,共67页。如:同一批对象实验前后某一指标的变化每对实验对象分别予以不同处理检验假设(ud为两组数据平均值的差值):统计量:若则否定成对地进行对比试验配对实验两个均值的比较样本均数和总体均数的比较第五十六页,共67页。配对实验例题3-9某化验师应用两种不同的方法测定10个样品,其结果列表如下,问两者有无显著差异?两个方法所得结果无显著差别,既统计意义上不存在系统误差。结论:样品结果解:第五十七页,共67页。3.4方差的统计分析
F检验–精密度差别检验H0:S12=S22H1
S12>S22b.查表(单侧F表),比较
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地方性甲状腺肿的临床护理
- 【大学课件】数据库安全性
- 《教练学学会介绍》课件
- 慢性鼻窦炎伴鼻息肉的健康宣教
- 《信道的纠错编码》课件
- 孕期牙龈红肿的健康宣教
- 《计算机系统组成新》课件
- 孕期失眠的健康宣教
- JJF(陕) 023-2020 自动分检衡器校准规范
- 《销售服务礼仪培训》课件
- 福建省泉州市2023-2024学年高一上学期期末质检英语试题(解析版)
- 第三单元第1课 标志设计 课件 2024-2025学年人教版(2024)初中美术七年级上册
- 2024年农贸市场日常管理制度例文(四篇)
- 《数字信号处理(第2版)》本科全套教学课件
- 4 古代诗歌四首《 观沧海》教学设计
- 2024公路工程危险性较大工程安全专项施工方案编制导则
- 四年级上册道德与法治全册教案
- 《供应链管理》期末考试复习题库(含答案)
- 中建一局劳务分包合同范本
- 天津市河北区2023-2024学年高一上学期1月期末化学试题(解析版)
- 中考模拟作文“独享、分享、共享”写作指导及范文赏析
评论
0/150
提交评论