应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题_第1页
应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题_第2页
应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题_第3页
应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题_第4页
应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

光滑导轨x0x0v收尾状态RRvt0vtt0vt0t0t0x0vx0vRRFt0vtt0vt0vt0vt0v匀速CCvt0t0vt0v匀速CCF00vt无电阻时vvtt0v匀速FFtt0v匀加速应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题1.模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变.2.常见模型类型“电—动—电”型“动—电—动”型示意图已知量棒ab长L,质量m,电阻R;导轨光滑水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计过程分析S闭合,棒ab受安培力F=eq\f(BLE,R),此时加速度a=eq\f(BLE,mR),棒ab速度v↑→感应电动势E′=BLv↑→电流I↓→安培力F=BIL↓→加速度a↓,当安培力F=0时,a=0,v最大,最后匀速运动棒ab释放后下滑,此时加速度a=gsinα,棒ab速度v↑→感应电动势E=BLv↑→电流I=eq\f(E,R)↑→安培力F=BIL↑→加速度a↓,当安培力F=mgsinα时,a=0,v最大,最后匀速运动能量转化通过安培力做功,把电能转化为动能克服安培力做功,把重力势能转化为内能运动形式变加速运动变加速运动最终状态匀速运动,vm=eq\f(E′,BL)匀速运动vm=eq\f(mgRsinα,B2L2)解析(1)设甲在磁场区域abcd内运动时间为t1,乙从开始运动到ab位置的时间为t2,则由运动学公式得L=eq\f(1,2)·2gsinθ·t,L=eq\f(1,2)gsinθ·t解得t1=eq\r(\f(L,gsinθ)),t2=eq\r(\f(2L,gsinθ))(1分)因为t1<t2,所以甲离开磁场时,乙还没有进入磁场.(1分)设乙进入磁场时的速度为v1,乙中产生的感应电动势为E1,回路中的电流为I1,则eq\f(1,2)mv=mgLsinθ(1分)E1=Bdv1(1分)I1=E1/2R(1分)mgsinθ=BI1d(1分)解得R=eq\f(B2d2,2m)eq\r(\f(2L,gsinθ))(1分)(2)从释放金属杆开始计时,设经过时间t,甲的速度为v,甲中产生的感应电动势为E,回路中的电流为I,外力为F,则v=at(1分)E=Bdv(1分)I=E/2R(1分)F+mgsinθ-BId=ma(1分)a=2gsinθ联立以上各式解得F=mgsinθ+mgsinθeq\r(\f(2gsinθ,L))·t(0≤t≤eq\r(\f(L,gsinθ)))(1分)方向垂直于杆平行于导轨向下.(1分)(3)甲在磁场运动过程中,乙没有进入磁场,设甲离开磁场时速度为v0,甲、乙产生的热量相同,均设为Q1,则v=2aL(1分)W+mgLsinθ=2Q1+eq\f(1,2)mv(2分)解得W=2Q1+mgLsinθ乙在磁场运动过程中,甲、乙产生相同的热量,均设为Q2,则2Q2=mgLsinθ(2分)根据题意有Q=Q1+Q2(1分)解得W=2Q(1分)答案(1)eq\f(B2d2,2m)eq\r(\f(2L,gsinθ))(2)F=mgsinθ+mgsinθeq\r(\f(2gsinθ,L))·t(0≤t≤eq\r(\f(L,gsinθ))),方向垂直于杆平行于导轨向下(3)2Q突破训练3如图7甲所示,足够长的光滑平行金属导轨MN、PQ竖直放置,其宽度L=1m,一匀强磁场垂直穿过导轨平面,导轨的上端M与P之间连接阻值为R=0.40Ω的电阻,质量为m=0.01kg、电阻为r=0.30Ω的金属棒ab紧贴在导轨上.现使金属棒ab由静止开始下滑,下滑过程中ab始终保持水平,且与导轨接触良好,其下滑距离s与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,导轨电阻不计,g=10m/s2(忽略ab棒运动过程中对原磁场的影响),求:甲乙图7(1)磁感应强度B的大小;(2)金属棒ab在开始运动的1.5s内,通过电阻R的电荷量;(3)金属棒ab在开始运动的1.5s内,电阻R上产生的热量.答案(1)0.1T(2)0.67C(3)0.26J解析(1)金属棒在AB段匀速运动,由题中图象乙得:v=eq\f(Δs,Δt)=7m/sI=eq\f(BLv,r+R),mg=BIL解得B=0.1T(2)q=eq\x\to(I)Δteq\x\to(I)=eq\f(ΔΦ,R+rΔt)ΔΦ=eq\f(ΔS,Δt)B解得:q=0.67C(3)Q=mgs-eq\f(1,2)mv2解得Q=0.455J从而QR=eq\f(R,r+R)Q=0.26J高考题组1.(2012·山东理综·20)如图8所示,相距为L的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R,匀强磁场垂直于导轨平面,磁感应强度为B.将质量为m的导体棒由静止释放,当速度达到v时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P,导体棒最终以2v的速度匀速运动.导体棒始终与导轨垂直且接触良好,图8不计导轨和导体棒的电阻,重力加速度为g.下列选项正确的是()A.P=2mgvsinθB.P=3mgvsinθC.当导体棒速度达到eq\f(v,2)时加速度大小为eq\f(g,2)sinθD.在速度达到2v以后匀速运动的过程中,R上产生的焦耳热等于拉力所做的功答案AC解析根据I=eq\f(E,R)=eq\f(BLv,R),导体棒由静止释放,速度达到v时,回路中的电流为I,则根据共点力的平衡条件,有mgsinθ=BIL.对导体棒施加一平行于导轨向下的拉力,使其以2v的速度匀速运动时,则回路中的电流为2I,则根据平衡条件,有F+mgsinθ=B·2IL,所以拉力F=mgsinθ,拉力的功率P=F×2v=2mgvsinθ,故选项A正确,选项B错误;当导体棒的速度达到eq\f(v,2)时,回路中的电流为eq\f(I,2),根据牛顿第二定律,得mgsinθ-Beq\f(I,2)L=ma,解得a=eq\f(g,2)sinθ,选项C正确;当导体棒以2v的速度匀速运动时,根据能量守恒定律知,重力和拉力所做的功之和等于R上产生的焦耳热,故选项D错误.2.(2012·江苏单科·13)某兴趣小组设计了一种发电装置,如图9所示.在磁极和圆柱状铁芯之间形成的两磁场区域的圆心角α均为eq\f(4,9)π,磁场均沿半径方向.匝数为N的矩形线圈abcd的边长ab=cd=l、bc=ad=2l.线圈以角速度ω绕中心轴匀速转动,bc边和ad边同时进入磁场.在磁场中,两条边所经过处的磁感应强度大小均为B、方向始终与两边的运动方向垂直.线圈的总电阻为r,外接电阻为R.求:图9(1)线圈切割磁感线时,感应电动势的大小Em;(2)线圈切割磁感线时,bc边所受安培力的大小F;(3)外接电阻上电流的有效值I.答案(1)2NBl2ω(2)eq\f(4N2B2l3ω,r+R)(3)eq\f(4NBl2ω,3r+R)解析(1)bc、ad边的运动速度v=ωeq\f(l,2)感应电动势Em=4NBlv解得Em=2NBl2ω(2)电流Im=eq\f(Em,r+R)安培力F=2NBIml解得F=eq\f(4N2B2l3ω,r+R)(3)一个周期内,通电时间t=eq\f(4,9)TR上消耗的电能W=IRt且W=I2RT解得I=eq\f(4NBl2ω,3r+R).模拟题组3.如图10,两根足够长光滑平行金属导轨PP′、QQ′倾斜放置,匀强磁场垂直于导轨平面,导轨的上端与水平放置的两金属板M、N相连,板间距离足够大,板间有一带电微粒,金属棒ab水平跨放在导轨上,下滑过程中与导轨接触良好.图10现同时由静止释放带电微粒和金属棒ab,则()A.金属棒ab最终可能匀速下滑B.金属棒ab一直加速下滑C.金属棒ab下滑过程中M板电势高于N板电势D.带电微粒不可能先向N板运动后向M板运动答案BC解析金属棒沿光滑导轨加速下滑,棒中有感应电动势而对金属板M、N充电,充电电流通过金属棒时金属棒受安培力作用,只有金属棒速度增大时才有充电电流,因此总有mgsinθ-BIl>0,金属棒将一直加速下滑,A错,B对;由右手定则可知,金属棒a端(即M板)电势高,C对;若微粒带负电,则电场力向上,与重力反向,开始时电场力为0,微粒向下加速,当电场力增大到大于重力时,微粒的加速度向上,可能向N板减速运动到零后再向M板运动,D错.4.如图11所示,足够长的光滑平行金属导轨cd和ef水平放置,在其左端连接倾角为θ=37°的光滑金属导轨ge、hc,导轨间距均为L=1m,在水平导轨和倾斜导轨上,各放一根与导轨垂直的金属杆,金属杆与导轨接触良好.金属杆a、b质量均为m=0.1kg,电阻Ra=2Ω、Rb=3Ω,其余电阻不计.在水平导轨和斜面导轨区域分别有竖直向上和竖直向下的匀强磁场B1、B2,且B1=B2=0.5T.已知从t=0时刻起,杆a在外力F1作用下由静止开始水平向右运动,杆b在水平向右的外力F2作用下始终保持静止状态,且F2=0.75+0.2t(N).(sin37°=0.6,cos37°=0.8,g取10m/s2)图11(1)通过计算判断杆a的运动情况;(2)从t=0时刻起,求1s内通过杆b的电荷量;(3)若t=0时刻起,2s内作用在杆a上的外力F1做功为13.2J,则这段时间内杆b上产生的热量为多少?答案(1)以4m/s2的加速度做匀加速运动(2)0.2C(3)6J解析(1)因为杆b静止,所以有F2-B2IL=mgtan37°而F2=0.75+0.2t(N)解得I=0.4t(A)整个电路中的电动势由杆a运动产生,故E=I(Ra+Rb)E=B1Lv解得v=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论