




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高阶线性微分方程第六节二、线性齐次方程解的结构三、线性非齐次方程解的结构
*四、常数变易法
一、二阶线性微分方程举例
第七章.一、二阶线性微分方程举例当重力与弹性力抵消时,物体处于平衡状态,例1.质量为m的物体自由悬挂在一端固定的弹簧上,力作用下作往复运动,解:阻力的大小与运动速度下拉物体使它离开平衡位置后放开,若用手向物体在弹性力与阻取平衡时物体的位置为坐标原点,建立坐标系如图.设时刻
t
物位移为x(t).(1)自由振动情况.弹性恢复力物体所受的力有:(虎克定律)成正比,方向相反.建立位移满足的微分方程..据牛顿第二定律得则得有阻尼自由振动方程:阻力(2)强迫振动情况.若物体在运动过程中还受铅直外力则得强迫振动方程:.求电容器两两极板间电压例2.
联组成的电路,其中R,L,C
为常数,所满足的微分方程.解:
设电路中电流为i(t),的电量为q(t),自感电动势为由电学知根据回路电压定律:设有一个电阻R,自感L,电容C和电源E串极板上在闭合回路中,所有支路上的电压降为0‖~.串联电路的振荡方程:化为关于的方程:故有‖~如果电容器充电后撤去电源(E=0),则得.n
阶线性微分方程的一般形式为方程的共性
(二阶线性微分方程)例1例2—可归结为同一形式:时,称为非齐次方程;时,称为齐次方程.复习:
一阶线性方程通解:非齐次方程特解齐次方程通解Y.证毕二、线性齐次方程解的结构是二阶线性齐次方程的两个解,也是该方程的解.证:代入方程左边,得(叠加原理)
定理1..说明:不一定是所给二阶方程的通解.例如,是某二阶齐次方程的解,也是齐次方程的解并不是通解但是则为解决通解的判别问题,下面引入函数的线性相关与线性无关概念..定义:是定义在区间I
上的
n个函数,使得则称这
n个函数在I
上线性相关,否则称为线性无关.例如,
在(,)上都有故它们在任何区间I
上都线性相关;又如,若在某区间
I
上则根据二次多项式至多只有两个零点,必需全为0,可见在任何区间
I
上都线性无关.若存在不全为
0
的常数.两个函数在区间I
上线性相关与线性无关的充要条件:线性相关存在不全为0的使(无妨设线性无关常数思考:中有一个恒为0,则必线性相关(证明略)线性无关.定理2.是二阶线性齐次方程的两个线性无关特解,数)是该方程的通解.例如,方程有特解且常数,故方程的通解为(自证)
推论.是
n
阶齐次方程的n
个线性无关解,则方程的通解为则.三、线性非齐次方程解的结构
是二阶非齐次方程的一个特解,Y(x)是相应齐次方程的通解,定理3.则是非齐次方程的通解.证:
将代入方程①左端,得②①.是非齐次方程的解,又Y中含有两个独立任意常数,例如,
方程有特解对应齐次方程有通解因此该方程的通解为证毕因而②也是通解..定理4.分别是方程的特解,是方程的特解.(非齐次方程之解的叠加原理)定理3,定理4均可推广到n
阶线性非齐次方程..定理5.是对应齐次方程的n
个线性无关特解,给定n
阶非齐次线性方程是非齐次方程的特解,则非齐次方程的通解为齐次方程通解非齐次方程特解.常数,则该方程的通解是().设线性无关函数都是二阶非齐次线性方程的解,是任意例3.提示:都是对应齐次方程的解,二者线性无关.(反证法可证).例4.
已知微分方程个解求此方程满足初始条件的特解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国烧结金属过滤器市场调查研究报告
- 2025年中国清水潜水电泵市场调查研究报告
- 2025年中国汽车缸盖分装线总体市场调查研究报告
- 项目服务协议书合同范本(2025版)
- 购物中心水电暖消防工程承包合同(2025版)
- 购房协议转让合同(2025版)
- 部门承包合同协议书范本新(2025版)
- 企业形象外包合同示例
- 《华为课件:电源技术解析与应用》
- 房产登记相关通知协议
- 专题01《水银花开的夜晚》 高考语文二轮复习
- 机动车维修竣工出厂合格证样式
- JJF 1338-2012相控阵超声探伤仪校准规范
- 中考数学复习备考-几何专题突破与拓展训练题
- GB/T 14388-1993木工硬质合金圆锯片
- 卫生院B超、心电图室危急值报告制度及流程
- 肿瘤化疗-课件
- 第三节钢筋混凝土排架结构单层工业厂房结构吊装课件
- 普通高中学生综合素质评价档案
- 产品路标规划-综述2.1
- 2023年郑州工业应用技术学院单招考试面试题库及答案解析
评论
0/150
提交评论