




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
千里之行,始于第2页/共2页精品文档推荐高考数学知识点及复习内容整理(归纳)高考数学学问点及复习内容整理(归纳)
数学是讨论数量、结构、变化、空间以及信息等概念的一门学科。起源于早期的人类生产活动,以下是我预备的高考数学学问点及复习内容整理,欢迎借鉴参考。
关于高考数学学问点
三倍角公式
三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
三倍角公式推导
附推导:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^3(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
即
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
三倍角公式联想记忆
记忆方法:谐音、联想
正弦三倍角:3元减4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
余弦三倍角:4元3角减3元(减完之后还有“余”)
☆☆留意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
另外的记忆方法:
正弦三倍角:山无司令(谐音为三无四立)三指的是3倍sinα,无指的是减号,四指的是4倍,立指的是sinα立方
余弦三倍角:司令无山与上同理
和差化积公式
三角函数的和差化积公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
积化和差公式
三角函数的积化和差公式
sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]
和差化积公式推导
附推导:
首先,我们知道sin(a+b)=sina__cosb+cosa__sinb,sin(a-b)=sina__cosb-cosa__sinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sina__cosb
所以,sina__cosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosa__sinb=(sin(a+b)-sin(a-b))/2
同样的,我们还知道cos(a+b)=cosa__cosb-sina__sinb,cos(a-b)=cosa__cosb+sina__sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa__cosb
所以我们就得到,cosa__cosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sina__sinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sina__cosb=(sin(a+b)+sin(a-b))/2
cosa__sinb=(sin(a+b)-sin(a-b))/2
cosa__cosb=(cos(a+b)+cos(a-b))/2
sina__sinb=-(cos(a+b)-cos(a-b))/2
有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式。
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)__cos((x-y)/2)
sinx-siny=2cos((x+y)/2)__sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)__cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)__sin((x-y)/2)
高考数学学问点总结
第一部分集合
(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;
(2)留意:争论的时候不要遗忘了的状况。
其次部分函数与导数
1、映射:留意
①第一个集合中的元素必需有象;
②一对一,或多对一。
2、函数值域的求法:
①分析法;
②配方法;
③判别式法;
④利用函数单调性;
⑤换元法;
⑥利用均值不等式;
⑦利用数形结合或几何意义(斜率、距离、肯定值的意义等);
⑧利用函数有界性;
⑨导数法
3、复合函数的有关问题
(1)复合函数定义域求法:
①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出。
②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数分解为基本函数:内函数与外函数;
②分别讨论内、外函数在各自定义域内的单调性;
③依据“同性则增,异性则减”来推断原函数在其定义域内的单调性。
留意:外函数的定义域是内函数的值域。
4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5、函数的奇偶性
(1)函数的定义域关于原点对称是函数具有奇偶性的必要条件;
(2)是奇函数;
(3)是偶函数;
(4)奇函数在原点有定义,则;
(5)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为简单,应先等价变形,再推断其奇偶性;
高中高考数学学问点归纳整理
三角函数
留意归一公式、诱导公式的正确性
数列题
证明一个数列是等差(等比)数列时,最终下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
最终一问证明不等式成立时,假如一端是常数,另一端是含有n的式子时,一般考虑用放缩法;假如两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,肯定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时肯定写上综上:由①②得证;
证明不等式时,有时构造函数,利用函数单调性很简洁
立体几何题
证明线面位置关系,一般不需要去建系,更简洁;
求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
留意向量所成的角的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年山东临沂平邑财金投资集团有限公司招聘笔试参考题库附带答案详解
- 2025年中国人民保险人保投资控股有限公司招聘笔试参考题库附带答案详解
- 2025年重庆新梁城市建设发展集团有限公司招聘笔试参考题库含答案解析
- 2025年贵州省麻江县开发建设工程有限公司招聘笔试参考题库含答案解析
- 2025年山东望海国际酒店管理有限责任公司招聘笔试参考题库含答案解析
- 2025年广西建工集团建筑产业投资有限公司招聘笔试参考题库含答案解析
- 二级计算机考试教学反思与总结实践试题及答案
- 基础与临床结合的西医知识试题及答案
- 2024年图书管理员考试心理准备与试题及答案
- 洋葱头考试题及答案
- 第15课《青春之光》课件-2024-2025学年统编版语文七年级下册
- 中国古典诗歌的多义性
- 《钢铁是怎样炼成的》知识竞赛课件讲义
- 济青高速涵洞定期检查报告模版
- 高考写作指导:作文训练之语言的提升
- 项目定标审批表
- 弱电安装安全安全技术交底
- Commvault数据库备份恢复功能介绍
- SJG 05-2020 基坑支护技术标准-高清现行
- 部编版语文一年级下册第一单元教材分析及教学建议
- 洲际酒店集团--皇冠酒店设计标准手册274P
评论
0/150
提交评论