




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章
§3-1位移和(工程)应变§3-2应变张量和转动张量
§3-3应变张量和转动张量的坐标变换式§3-4主应变、主应变方向、应变张量
的三个不变量§3-5变形协调条件(相容条件)
3/27/20231在第二章我们研究了应力张量本身和体力、面力之间的关系式,即平衡规律。本章将讨论变形体研究的另一个基本关系:变形与位移之间的关系。当然要以小变形假设为基础,位移和形变相对于变形体几何尺寸是微小的。§3-1位移和(工程)应变3/27/20232§3-1位移和(工程)应变1.1位移x2x1x3PoP
有三个分量。
P’u变形体任意点P的位移矢量3/27/20233§3-1位移和(工程)应变工程应变共有六个分量:x1x2x3P23x1x2x3Pdx1dx2dx322dx2三个正应变,正应变以伸长为正,三个剪应变,剪应变以使直角变小为正。
3/27/20235§3-2应变张量和转动张量
应变张量和转动张量是描述一点变形和刚体转动的两个非常重要的物理量,本节将讨论一下它们与位移之间关系,在讨论之前,先介绍一下相对位移矢量和张量.3/27/20236x2x1x3PoP
Q§3-2应变张量和转动张量2.1相对位移矢量和相对位移张量
——相对位移矢量
P’uu+duQ’’
P’
Q’3/27/20237§3-2应变张量和转动张量
根据商法则
令
为一个二阶张量——相对位移张量
3/27/20239§3-2应变张量和转动张量2.2应变张量和转动张量
相对位移张量ui,j包含了变形和刚体转动,为了将两者分开,对ui,j进行整理,张量分成对称和反对称张量之和。
或
3/27/202310§3-2应变张量和转动张量其中
ij=ji(对称张量),ij=-ji
(反对称张量)
而ij
表示变形体的形变,ij
表示了刚体转动。
3/27/202311§3-2应变张量和转动张量相对位移
u1,1P’R’’Q’’R’Q’x1x2dx1=1dx2=1u1,2u2,1u2,2PQRu1、u2x1x2dx1=1dx2=13/27/202313§3-2应变张量和转动张量11,12=21,22
纯变形
12=-21
纯转动
12=(u1,2+u2,1)/222=u2,211=u1,121=(u2,1+u1,2)/2(+)/2+x2
x1
12=(u1,2-u2,1)/221=(u2,1-u1,2)/2x2
x1
3/27/202314§3-2应变张量和转动张量2.3转动张量的对偶矢量
由纯刚体转动可见,12=-21,正好相当于一个沿x3轴方向的转动矢量,方向为,其大小3:类似可得,其它两个坐标平面转动矢量,3/27/202315§3-2应变张量和转动张量比较工程应变定义和应变张量,可得:
3/27/202317§3-3应变张量和转动张量的坐
标变换式
在xk坐标系中,已知变形体内任一点应变张量
kl和转动张量kl,则在新笛卡尔坐标系x’i中此点应变张量’ij和’ij均可以通过二阶张量的坐标转换式求出它们。即:
3/27/202318§3-4主应变、应变方向应变张量的三
个不变量
确定一点的主应变和应变主方向方法与求主应力和应力主方向的方法完全一致,求主应变的方程分别为应变张量的三个不变量。解出1、2、3(实根)3/27/202319§3-5变形协调条件(相容条件)
在本章第二节中我们讨论了一点的应变张量,它包含了一点的变形信息,应变张量与位移微分关系称为几何方程(共六个)。如果已知变形体的位移状态,则由这六个方程直接求出应变张量,但反之由六个独立的任意ij求ui不行。3/27/202321§3-5变形协调条件(相容条件)
因为ij仅包含形变,由其求出位移时,刚体位移是无法确定的,因此,位移无法确定。
ij
分量之间必须满足一定的条件(方程),才能由几何方程积分求出单值连续的位移场ui、ij的分量必须满足的方程称为变形协调方程或相容方程。3/27/202322§3-5变形协调条件(相容条件)
变形协调方程共有六个,可由几何方程直接导出。即:
3/27/202323§3-5变形协调条件(相容条件)3/27/202325§3-5变形协调条件(相容条件)3/27/202326§3-5变形协调条件(相容条件)结论:应变张量
ij满足变形协调方程是保证单连域的位移单值连续解存在的必要和充分条件。对于复连域还需附加补充条件——位移单值条件。
单连域:变形体内的任何一条封闭线当缩小时均能变为一点,当不满足时为多连域。
3/27/202329§3-5变形协调条件(相容条件)
对于多连域附加补充条件办法为:假想通过适当截断,使域为单连域.在截断面ab两侧u+i=u-i即为补充条件。
abu+u-3/27/202330作业:
1.给定位移分量
u1=cx1(x2+x3)2,
u2=cx2(x1+x3)2,
u3=cx3(x1+x2)2
此处
c为一个很小的常数,求应变张量ij和转动张量ij。2.将直角坐标系绕x3轴转动角,求新坐标系应变分量的转换关系。3/27/202331作业:3.假定体积不可压缩,位移u1(x1,x2)与u2(x1,x2)很小,u3=0。在一定区域内已知
u1=c(1-x22)(a+bx1+cx12),其中a、b、c为常数,且12=0,求u2(x1,x2)。4.试分析以下工程应变状态能否存在
(1)11=k(x12+x22)
x3,22=kx22x3,33=0
12=2kx1x2x3,23=13=0
3/27/202332作业:(2)11=k(x12+x22),22=kx22
,33=0,
12=2kx1x2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国天然维生素E(生育酚和生育酚)行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国外部起搏器行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国复合砌块行业市场深度发展趋势与前景展望战略研究报告
- 2025-2030中国型钢行业市场深度调研及发展趋势和投资前景预测研究报告
- 2025-2030中国围棋行业市场深度调研及竞争格局与发展趋势研究报告
- 2025-2030中国喷墨打印机行业市场发展分析及投资前景与投资策略研究报告
- 2025-2030中国商品混凝土行业市场深度调研及发展趋势与投资前景研究报告
- 2025-2030中国可变风量(VAV)操作系统行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国医院泡沫床垫行业市场发展趋势与前景展望战略研究报告
- 互联网产业投资协议合同范本
- DB32T 3310-2017 船闸维护规程
- 好工作一八法
- 手术室穿无菌手术衣
- DB14∕T 1822-2019 旅游景区安全评估规范
- 公共部门人力资源管理课件:公共部门职业生涯管理
- 水利工程施工监理规范(SL288-2014)用表填表说明及示例
- 马岛战争课件教学课件
- 抽水蓄能电站地下厂房系统开挖工程施工方案
- 口腔护理学基础-口腔四手操作技术
- 2024年官方兽医考试题库
- 历史中考冲刺之答题技巧选择题材料题论述题(部编版)
评论
0/150
提交评论