数学建模汽车租赁调度问题_第1页
数学建模汽车租赁调度问题_第2页
数学建模汽车租赁调度问题_第3页
数学建模汽车租赁调度问题_第4页
数学建模汽车租赁调度问题_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

汽车租赁度问题国汽车租赁市场兴起于1900年亚运会随后在、及等国际化程度较高的城市率先发展直至2000年左右,汽车租赁市场开始在其他城市发展。为了对某市的一家租赁公司获利情况进行分析并确定汽车调度方案文我们以非线性规划为基础,通过matlab等软件对数据进行处理,最小二乘法对缺失数据进行预测,最终使用lingo软件进行编程求解得到最终的优化方案。在问题一中我们基于对题目中尽量满足需求的理解考虑到总的车辆数和总的需求量之间的关系用最小偏差法和分段考虑法进行了计算分别建立多目标规划模型和非线性规划模型通过对转运后各代理点最终的车辆数进行分析比较两种结果得到更优的转运方案。在问题二中我们一方面要对其短缺损失进行理解另一方面要考虑是否应该考虑在尽量满足需求的条件下求其最低的转运费用和短缺损失问题中我们同样分两种情况对其进行考虑通过比较两者最低费用并且结合实际情况得到更合理的转运方案。在问题三中首先我们分析数据剔除了其中一场的部分并用最小二乘法对缺失数据进行预测得到完整的单位租赁费用与短缺损失费用然后综合考虑各种因素后们将公司获利最大作为最终目标函数通过非线性规划的模型求得最佳方案。..

在问题四中我们没有直接对是否购买新车作出判断而是直接以其八年获利最大为目标进行非线性规划,购买的车辆数成为其目标函数中的一个未知数,用lingo可直接求得在获利最大时的购车数量,将其与不购车时的利润进行比较可得到最佳的购买方案。关键词:非线性规划全局最优短缺损失最小二乘法.问国汽车租赁市场兴起于1990年亚运会随后在、及等国际化程度较高的城市率先发展,直至2000年左右,汽车租赁市场开始在其他城市发展。某城市有一家汽车租赁公司,此公司年初在全市围有379辆可供租赁的汽车,..

分布于20个代理点中。每个代理点的位置都以地理坐标X和形式给出,单位为千米。假定两个代理点之间的距离约为他们之间欧氏距离(即直线距离)的1.2倍。要求根据附件所给数据计算如下问题:1.给出未来四周每天的汽车调度方案,在尽量满足需求的前提下,使总的转运费用最低;2.考虑到由于汽车数量不足而带来的经济损失,给出使未来四周总的转运费用及短缺损失最低的汽车调度方案;3.综合考虑公司获利、转运费用以及短缺损失等因素,确定未来四周的汽车调度方案;4.为了使年度总获利最大,从长期考虑是否需要购买新车?如果购买的话,确定购买计(考虑到购买数量与价格优惠幅度之间的关系在此假设如果购买新车,只购买一款车型汽车租赁调度问题是一个典型的数学规划问题需要综合考虑转运费用短缺损失,公司获利等多方面因素,在掌握了各代理点实际需求下,根据一定要求,寻找到使目标函数满意的优化解。问题一中要求在尽量满足需求的前提下使未来四周的总转运费用最低对数据进行处理后对尽量满足需求这一约束条件认为其在需求量大于供应量时应保证每辆车都能够被利用需求量小于供应量时应保证每个代理点的需求都能被满足然后据此约束建立多目标规划模型求全局最优解使得未来四周总的转运费用最小。针对问题二我们需要考虑在汽车数量不足的情况下所带来的短缺损失所谓..

短缺损失是指在某代理点某天经过转运后最终的车辆数比需求量少时少的车辆数与单位短缺损失的乘积在此基础上建立两种模型第一种是尽量满足需求条件下的模型第二种是不考虑尽量满足需求这一条件下的模型然后分别建立非线性规划模型求全局最优,使得未来四周的转运费与短缺损失之和最小。针对问题三综合考虑公司获利转运费用以及短缺损失等因素以公司获利最多作为目标函数考虑到前期尽量满足需求对公司后续的租赁需求影响在此仅分析在尽量满足需求条件下获利最多对于附录中丢失的数据我们将平均需求量与租赁收入之间的关系曲线采用最小二乘法进行拟合测出缺失的数据以及异常数据最后将其考虑为非线性规划问题对其进行规划求全局最优得到最佳的调度方案。针对问题四,由于一年中最大需求量要比实际供应量多66辆车,故我们将购买车的数量m取小于66的值,然后分别计算每增加一辆能够获得的最大的利润,然后求得最优的m值,该m的取值区间会有一个值使得获利最大。由于车型不影响租赁收入,所以在考虑车型时,选择是8年成本和维修费用之和最低的一款。xan

kikikij

第k天第i个代理点转运之后最终的车辆数第k天第i个代理点的需求车量数第k天第i个代理点转到第j个代理点的车辆数p

ij

第i个代理点到第j个代理点转运一辆的运费b

i

第i个代理点的单位短缺损失(万元/*辆)..

AB

k

该公司拥有的总的车辆数每天所有代理点总的需求量em

选中的车型每辆总的花费需要购买的车辆数d

ki

第k天第i个代理点短缺的车辆数1.假设租赁车辆不会损坏,且不会产生维修保养费用。2.假设当天租出去的车会当天归还,不影响第二天租赁。3.假设每次车辆转运发生在一天的结束后,第二天之前。4.假设附件2所给一年各代理点的汽车需求量代表未来八年的汽车需求量。5.假设购买新车的周期为8年。6.假设价格不考虑涨价等情况。7.假设前期的不满足需求不会影响到后续的需求量。5.1问题一5.1.1对问题一理解问题一要求在尽量满足需求的前提下使总的转运费用最低对于尽量满足需求我们对其有两种理解一是使每天每个代理点转运后最终的车辆数与其需求量..

29202029202020的偏差最小二是认为其在需求量大于供应量时应保证每辆车都能够被利用在需求量小于供应量时应保证每个代理点的需求都能被满足。5.1.2基于偏差小的目标规模型建立与解首先用matlab对附件1和附件6中数据进行处理,得到两两代理点之间每转运一辆车的转运费用。具体结果见附件1。用

x

ki

aki

表示其偏差,建立多目标规划如下:minxis.t.

X

379上式可求得当其偏差和最小时每天每个代理点经过转运后的最终车辆数此基础上以其转运费用最低为目标函数建立如下模型:min

nkij

pijkijs.t.

j

nkij

j

nkji

x(

ki利用lingo软件编程解得最小的转运费用为70.4987万元,以下是前11天各代理点转运之后最终的车辆数。由下表数据可知在该模型下虽然大部分代理点几乎完全满足需求但是一些代理点经过转运之后一辆车也没有这违背了尽量满足需求这一条件也不符合实际情况,同时求解得到其运输费用最小为70.4987万元,高于第二个模型的最小运输费用,所以该模型被舍弃。..

表5.1.2

前11天各代理点转运之后最终的车辆数

123456789ABCDEFGHIJKLMNOPQRST

4

900

80

001

0

0

05.1.3基于分段虑的线性规模型建立与解对该公司拥有的总的车辆数和总的需求量进行比较通过对两者大小的判断以此述判断为分段约束条件,直接以转运费用最低位目标函数建立非线性规划模型如..

29202920下:min

nkij

pijkijs.t.

j

nkij

j

nkji

x

ki当

AB时k

xki

aki当

AB时k

利用lingo软件编程对该模型进行求解得,最小的转运费用为40.4916万元,下表给出前11天各代理点转运之后的最终车辆数,完整表格见附件3:表5.1.3

前11天各代理点转运之后最终的车辆数111234567890

12

1

1

1

1

2

2

1

2

2

2A21

52

52

51

42

21

11

51

22

82

81B81

22

22

72

12

92

22

12

51

02

11C91

22

21

12

72

72

72

51

11

51

41D82

61

51

01

01

01

01

21

21

11

22E4

5

5

2

7

5

5

8

8

3

1..

1

2

2

1

1

1

1

2

1

1

2F61

01

42

82

82

41

52

91

42

72

01G91

51

11

11

11

32

22

62

42

21

42H72

21

51

41

82

62

42

42

32

31

21I21

91

81

71

51

52

01

02

41

42

11J51

62

31

81

31

31

91

63

42

92

11K82

12

71

11

21

61

61

01

71

72

22L31

33

82

82

32

71

42

21

62

21

23M41

01

11

32

01

21

01

51

01

91

01N81

31

91

01

51

61

41

51

11

21

81OP

81

72

52

52

52

52

53

31

31

32

71..

72

41

82

81

92

51

03

71

81

31

62Q12

61

81

81

41

41

01

21

52

41

52R31

31

22

52

52

42

12

82

22

51

92S81

22

81

83

81

02

01

13

22

62

52T9

8

3

0

4

6

4

0

8

6

1由上表数据可以看出,该模型在尽量满足需求的条件下分配的也比较合理,远远优于第一种模型,而且转运费用也远远低于第一种模型。转运方案:1-20分别代表A-T20个赁代理点第一天:15→10(9)8→4(1)10→3(3)10→6(4)10→7(1)14→13(5)15→4(1)1617→20(5)184(1)18→16(9)19→13(6)

→第二天:→7(2)10→7(4)→6(4)→14(5)→16(4)13→19(5)14→19(8)1→19(2)18→19(1)20→8(3)20→17(12)第十四天:4→11(12)6→11(2)8→20(3)9→10(16)14→13(2)14→16(4)15→2(6)15→3(2)15→4(5)15→14(1)17→3(3)19→18(1)20→3(2)完整转运方案可见附件2分析第十四天的转运方案在代理点4既有转入又有转出表面上看如此周折会产..

生多余费用,实际上这样是节省了转运费用,由附件1可知,15→11转运费用0.04余万元每千米,而15再从4→11转运费用是0.03余万元每千米。因此如此周转节省了转运费用。5.1.4模型比较通过对以上两种方案最小转运费用的的比较现第二种基于全局优化的非线性规划模型得到的最小转运费用远远小于第一种模型且由第一种方案得到的转运后的最终车辆数在一部分代理点中出现了零这是不符合实际情况的也偏离了尽量满足需求这一要求。所以我们选择了第二种方案作为最终的调度方案。5.2问题二5.2.1对问题二理解问题二要求在考虑短缺损失的情况下得使四周总的转运费用及短缺损失最低的最佳汽车调度方案本题我们同样分两种情况考虑第一种是考虑在尽量满足需求的前提进行求解即在问题一的基础上保留使得尽量满足需求的约束条件第二种是不考虑尽量满足需求即在问题一的基础上去掉使得尽量满足需求的约束条件并且应该明确的是在尽量满足需求的前提下只有在该公司拥有的总的车辆数小于总的需求量时才存在短缺损失并且是转运费用与短缺损失之和最低由此我们可以以和费用最低为目标函数建立如下模型。5.2.2考虑尽量足需时模型建立求解考虑尽量满足需求要对该公司拥有的总的车辆数和总的需求量之间进行比较在需求量大于供应量时应保证每辆车都能够被利用在需求量小于供应量时应..

2920202920202920292020292020保证每个代理点的需求都能被满足。建立非线性规划模型如下:min

pkijij

d

ki

bikij

kis.t.

kijj

nkji

x

ki当

a

ki

x时ki

ki

ki

x

ki当

a

ki

x时ki

d

ki

0当

AB时k

xki

ki当

AB时k

x

ki

a

ki利用lingo软件编程对该模型进行求解,最小的转运费用与短缺损失共为70.1639万元5.2.3不考虑尽满足求时的型建与求解不考虑尽量满足需求使得损失与运输费之和最小而不用考虑尽量满足需求这一约束条件,建立非线性规划模型如下:min

pkijij

d

ki

bikij

kis.t.

kijjj

nkji

(

ki当

a

ki

x时ki

ki

ki

x

ki当

a

ki

x时ki

d

ki

0运用lingo软件编程对该模型进行求解,最小的转运费用为64.2085万元。汽车调度方案见附件4..

通过分析各代理点的转运费用和短缺损失费用,可以知道造成两种模型的差价原因由数据可知部分代理点中从一个代理点到另一个代理点的转运费用是大于后者代理点的短缺损失费用的因此在尽量满足需求的前提下调动进行的多一些忽略了差价,使得总的费用高于第二种模型。5.2.4模型比较通过比较以上两种情况下的最小转运费用们会发现考虑尽量满足需求与不考虑尽量满足需求的最小转运费用相差并不大们综合考虑能让每个代理点尽可能的正常运行公司的信誉等多方面因素虑尽量满足需求这种情况更加合理。5.3问题三5.3.1对问题三理解问题三要在综合考虑公司获利转运费用以及短缺损失等因素的情况下确定未来四周的汽车调度方案使总的获利最大化同样需要考虑尽量满足需求在此与问题2相似仅考虑尽量满足需求这一情况其余不再赘述由于附件5所给的单位租赁收入数据不完整我们需要对其缺少的数据进行预测从而计算其总的租赁收入。..

5.3.2基于最小乘法预测模对于该题中的数据缺失,需要对其数据进行预测,我们认为其租赁收入预期地理位置有关,用MATLAB做出代理点分布图如下,对地理位置邻近的代理点的租赁收入分析后发现并无必然联系。图5.3.2.1再次经过对数据的比对分析后我们认为其与未来四周各代理点平均每天的需求量有一定关系,计算出每个代理点前四周平均需求量与租赁收入表如下表5.3.2.1代理

ABCEFGIJ租赁(万元/辆)0.390.350.490.30.410.3950.360.370.4各代平均需求代理

17.2069KLMOPQST租赁(万元/辆)0.3790.3650.40.42各代平均需求

21.4137916.793116.2069其数据基本满足线性关系,在MATLAB下用最小二乘法分别进行一次函数拟合,二次函数拟合,三次函数拟合,可得其拟合函数均为一次线性关系,如下图..

202020图5.3.2.2所以采用一次拟合函数补全缺失数据如下表表5.3.2.2代理点ABCDFGHIJ租赁收入(万元天0.390.350.490.30.410.3950.360.370.4各代理点平均需17.206919.51724代理点KLMNPQRST租赁收入(万元天0.3790.3650.40.420.38780.3702各代理点平均需16.206923.241385.3.3基于公司利最的模型立与解考虑到公司获利要多转运费用及短缺损失要尽量少我们建立非线性规划模型如下:max

X

Cki

pkijij

d

ki

biki

ki

kis.t.

j

nkij

j

nkji

(

ki当

a

ki

x时ki

ki

ki

x

ki..

a

ki

x时ki

d

ki

0当

AB时k

xki

ki当

AB时k

利用lingo软件编程对该模型进行求解,可以得到在尽量满足需求的条件下公司在这四周获利最多为4103.29万元。5.4问题四5.4.1对问题四理解首先我们要考虑购买新车是否能够使获利增加其次如果购买则要对其购买哪种车型及购买多少辆进行确定。在此我们假设购买了m辆车,使其总车辆数达到379+m辆,然后对其最大获利进行计算,从而可得到最大获利时m的值。如果m=0则表示购买车并不能够使获利增加。5.4.2问题四模的建与求解a.车型的择通过excel对附件4中数据进行处理,得到购买每种车型八年所需总费用。结果如下表:表5.4.2.1车型八年总花万)

143.19

246.66

348.75

444.27

558.3

653.3

754.71

841.21

960.24

1056.68..

36536536536520365由上表可得第8种车型八年总的花费最低为不管车好车坏我们都只考虑其只能使用8年且不考虑八年后车辆的残存费用较贵的车型并不能使得租赁费用增加或使需求量有所改变在对车型的选择时我们只考虑车费和8年总的维修费之和最低,根据上表,如需购买车辆,则选择第8种型号的车。b.型建立假设购买m辆第8种型号的车,由附件2中一年的数据分析可得,需求量最多时缺少66辆车,所以购买车辆数m的上限为66辆,为使其八年总的获利最多,即建立目标函数使得平均每年的的获利最多以减少计算的数据量将每辆车的总费用平均分摊到每一年,建立非线性规划模型如下:maxCkiiki

pkijijkijki

dbemkiis.t.

kijj

nkji

x

kim

0当

a

ki

x时ki

ki

ki

x

ki当

a

ki

x时ki

d

ki

0c.型求解用lingo软件编程对该模型进行求解,得到最大获利与够买车辆数量关系图如下..

图5.4.2.1可得出该公司八年中平均每年获利最大值为52855.52万元,获利最大时对应m值为46即购买46辆第8种型号的车能够使每年获利达到最大值52855.52万元,所以应该购买新车,购买46辆第八种型号的车可以使总获利最大。.模问题一通过比较对尽量满足需求的两种理解出分段考虑总的车辆数和总的需求量大小的结果更优但我们并不知道该公司具体对尽量满足需求的要求在本题中分别建立了多目标规划模型和非线性规划模型,用lingo求解运行时间过长,如果可以建立线性规划模型那么可以大大缩短运行时间。问题二同样建立非线性规划模型对转运费用与短缺费用之和求最小值模型简单明了易于执行并且考虑了尽量满足需求与不尽量满足需求两种情况通过比较分析,得到的结果更加符合实际。问题三巧妙地使用最小二乘法求得缺失的数据虽然不是非常精确但方法简..

单,执行方便,可靠程度较高。通过对问题的分析,将获利最大作为最终目标进行规划求解简化了求解过程考虑到预测数据的精确性本题还可用BP神经网络,综合多个因素影响,结果会更加可靠。问题四引入变量购买车辆数将两问结合成一个非线性规划问题次性可以解决两个问题,模型简单,可行性高,便于推广。[1]庆等,数值分析(第四版中科技大学,[2]胡运权,运筹学教程(第三版)清华大学,2007.4[3]吴建国等,数学建模案例精编,中国水利水电,2005[4]启源等,数学模型(第三版等教育,[5],数学模型与计算,科学,2007.2..

程序问题1:ti1.lg4modelsets:i/1..20/:shu;k/1..29/:shuzi;lin(k):c;link(k,i):a,b;links(i,i,k):p;linkp(i,i):yun;endsetsmin=sumsum(i(x):sum(i(y):p(x,y,z)*yun(x,y))));for(k(z)|z#le#28:for(i(y):sum(i(x):p(y,x,z+1)-p(x,y,z+1))=b(z,y)-b(z+1,y)));for(k(z):c(z)=sumfor(link(z,x):if(c(z)#gt#379,b(z,x),-b(z,x))<=if(c(z)#gt#379,a(z,x),-a(z,x)));for(k(t):sum(i(x):b(t,x))=379);for(link:ginfor(links:gin(p));..

data:enddataendti1.m计算两两理点之间距离clearall;clc;读取坐标coordinate=xlsread('C:\Users\lifeng\Desktop\2014模拟练2\A题车租赁调度问题\附件:理点的位置及年初拥车辆数.,'Sheet1','B3:U4'distance=zeros(20);length=size(distance);%%为距离阵赋权值fori=1:lengthfordistance(i,j)=sqrt((coordinate(1,i)-coordinate(1,j))^2+(coordinate(2,i)-coordinate(2,j))^2);endend%%计算每车在代理间的转运格单位转运本cost=xlsread('C:\Users\lifeng\Desktop\2014模拟练2\A题汽车租赁调度问\附6同代点之间的转运成本.'Sheet1''C3:V22');price=cost.*distance*1.2;fori=1:lengthforj=i:lengthprice(i,j)=price(j,i);endendxlswrite('C:\Users\lifeng\Desktop\2014模拟练习2\代码\每辆车在代理点间的转运价格xls',price,'C3:V22');问题2:..

ti2.lg4!第二题model:!i代表站点,代表日期lost代表点的单位失c代表每天的需总量,a分别每个站点需求量,实际量缺口量p为转数量,yun代表运;sets:i/1..20/:shu;k/1..29/:shuzi;li(i):lost;lin(k):c;link(k,i):a,b,d;links(i,i,k):p;linkp(i,i):yun;endsetsmin=sum(k(z):sum(i(x):sum(i(y):p(x,y,z)*yun(x,y))))+sum(link(z,x):d(z,x)*lost(x));for(k(z)|z#le#28:for(i(y):sum(i(x):p(y,x,z+1)-p(x,y,z+1))=b(z,y)-b(z+1,y)));for(link(z,x):d(z,x)=if(a(z,x)#gt#b(z,x),a(z,x)-b(z,x),0));for(k(z):c(z)=sum(i(x(z,x)));for(link(z,x):if(c(z)#gt#379,b(z,x),-b(z,=if(c(z)#gt#379,a(z,x),-a(z,x)));for(k(t):sum(i(x):b(t,x))=37for(link:gin(b));for(links:gin(p));data:enddataend问题3:ti3.lg4!第三题model:!i代表站点,代表日期lost代表点的单位失c代表每天的需总量,a分别每个站点需求量,实际量缺口量p为转数量,yun代表运;sets:..

i/1..20/:shu;k/1..29/:shuzi;li(i):lost,win;lin(k):c;link(links(i,i,k):p;linkp(i,i):yun;endsetsmax=sum(link(z,x):e(z,x)*win(x))-sum(k(z):sum(i(x):sum(i(y)x,y,z)*yun(x,y))))-sum(link(z,x):d(z,x)*lost(x));for(k(z)|z#le#28:for(i(y):sum(i(x):p(y,x,z+1)-p(x,y,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论