




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年七下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,直线AB交CD于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=4:1,则∠AOF等于()A.130° B.120° C.110° D.100°2.下面每组数分别是三根小木棒的长度,用它们不能摆成一个三角形的是()A.5cm,10cm,5cm B.7cm,8cm,9cmC.3cm,4cm,5cm D.6cm,20cm,20cm3.若代数式的值是2,则x等于A.2 B. C.6 D.4.若不等式组无解,则k的取值范圈为()A.k≥1 B.k≤1 C.k<1 D.k>15.下列各图中,是轴对称图形的是()A. B. C. D.6.如图,在ABC中,DE是AC的垂直平分线,且分别交BC、AC于D、E两点,∠B=60°,∠BAD=70°,则∠BAC的度数为()A.130° B.95° C.90° D.85°7.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠38.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156米,则这个数用科学记数法表示为()A.0.156×10-5 B.0.156×1059.如果a,1+a,﹣a,1﹣a这四个数在数轴上对应的点是按从左到右的顺序排列的,那么a的取值范围是()A.a>0 B.a<0 C.a> D.a<10.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤,价格为每斤y元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是()A.x<y B.x>y C.x≤y D.x≥y11.4的平方根是()A.2 B.16 C.±2 D.±12.某次考试中,某班的数学成绩统计图如图所示,下列说法错误的是A.得分在分之间的人数最多 B.该班的总人数为40C.得分在分之间的人数最少 D.不及格(分)人数是6二、填空题(每题4分,满分20分,将答案填在答题纸上)13.如图,,平分,若,,则__________.14.不等式的负整数解是______.15.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.16.如图,△ABC的两边AC和BC的垂直平分极分别交AB于D、E两点,若AB边的长为10cm,则△CDE的周长为_____cm.17.如图,在长方形ABCD中,AB=7cm,BC=10cm,现将长方形ABCD向右平移3cm,再向下平移4cm后到长方形A'B'C'D'的位置,A'B'交BC于点E,A'D'交DC于点F,那么长方形A'ECF的周长为_____cm.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)解不等式组,把其解集表示在数轴上,并写出不等式组的最大整数解.19.(5分)发现:已知△ABC中,AE是△ABC的角平分线,∠B=72°,∠C=36°(1)如图1,若AD⊥BC于点D,求∠DAE的度数;(2)如图2,若P为AE上一个动点(P不与A、E重合),且PF⊥BC于点F时,∠EPF=°.(3)探究:如图2△ABC中,已知∠B,∠C均为一般锐角,∠B>∠C,AE是△ABC的角平分线,若P为线段AE上一个动点(P不与E重合),且PF⊥BC于点F时,请写出∠EPF与∠B,∠C的关系,并说明理由.20.(8分)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.21.(10分)如图表示甲骑摩托车和乙驾驶汽车沿相同的路线行驶90千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据图象填空:(1)摩托车的速度为_____千米/小时;汽车的速度为_____千米/小时;(2)汽车比摩托车早_____小时到达B地.(3)在汽车出发后几小时,汽车和摩托车相遇?说明理由.22.(10分)随着夏季的到来,我县居民的用电量猛增.目前,我县城市居民用电收费方式有以下两种:①普通电价付费方式:全天0.52元/度;②峰谷电价付费方式:用电高峰时段(早8:00—晚21:00)0.65元/度;用电低谷时段(晚21:00—早8:00)0.40元/度.(1)已知小丽家5月份总用电量为280度.①若其中高峰时段用电量为80度,则小丽家按照哪种方式付电费比较合算?能省多少元?②若小丽家采用峰谷电价付费方式交电费137元,那么,小丽家高峰时段用电量为多少度?(2)到6月份付费时,小丽发现6月份总用电量为320度,用峰谷电价付费方式比普通电价付费方式省了18.4元,那么,6月份小丽家高峰时段用电量为多少度?23.(12分)已知关于x,y的方程组的解为正数.(1)求a的取值范围;(2)化简:
参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、B【解析】
先设出∠BOE=α,再表示出∠DOE=α∠AOD=4α,建立方程求出α,最用利用对顶角,角之间的和差即可.【详解】解:设∠BOE=α,∵∠AOD:∠BOE=4:1,∴∠AOD=4α,∵OE平分∠BOD,∴∠DOE=∠BOE=α∴∠AOD+∠DOE+∠BOE=180°,∴4α+α+α=180°,∴α=30°,∴∠AOD=4α=120°,∴∠BOC=∠AOD=120°,∵OF平分∠COB,∴∠COF=∠BOC=60°,∵∠AOC=∠BOD=2α=60°,∴∠AOF=∠AOC+∠COF=120°,故选:B.【点睛】此题是对顶角,邻补角题,还考查了角平分线的意义,解本题的关键是找到角与角之间的关系,用方程的思想解决几何问题是初中阶段常用的方法.2、A【解析】
根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【详解】A、5+5=10,故以这三条线段不能构成三角形,选项正确;B、7+8>9,故以这三条线段能构成三角形,选项错误;C、3+4>5,故以这三条线段能构成三角形,选项错误;D、6+20>20,故以这三条线段可以构成三角形,选项错误,故选A.【点睛】本题考查了三角形的三边关系,正确理解三角形三边关系定理是解题关键.3、B【解析】
由已知可得=2,解方程可得.【详解】由已知可得=2,解得x=-2.故选B.【点睛】本题考核知识点:列方程,解方程.解题关键点:根据题意列出一元一次方程.4、B【解析】
根据已知不等式组无解即可得出选项.【详解】解:解不等式2x+9<6x+1,得:x>2,解不等式x﹣k<1,得:x<k+1,∵不等式组无解,∴k+1≤2,解得:k≤1,故选:B.【点睛】本题考查了解一元一次不等式组,能根据已知得出k的范围是解此题的关键.5、B【解析】
根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6、B【解析】
根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BDA的度数,计算出结果.【详解】∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C,∵∠B=60°,∠BAD=70°,∴∠BDA=50°,∴∠DAC=∠BDA=25°,∴∠BAC=∠BAD+∠DAC=70°+25°=95°故选B.【点睛】本题考查的是线段垂直平分线的性质的知识,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7、C【解析】试题解析:分式方程去分母得:m-1=x-1,解得:x=m-2,由方程的解为非负数,得到m-2≥0,且m-2≠1,解得:m≥2且m≠1.故选C.考点:分式方程的解.8、C【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以为0•00000156=1.56×10-6,故选C.9、D【解析】
四个数在数轴上对应的点是按从左到右的顺序排列,即已知四个数的大小关系,即可得到关于a的不等式组,从而求得a的范围.【详解】根据题意得:a<1+a<-a<1-a,
即:1+a<-a,
解得:a<.
故选D.【点睛】本题主要考查了数轴上的点所表示的数的关系,数轴上右边的数总是大于左边的数.10、B【解析】
解:根据题意得,他买黄瓜每斤平均价是,以每斤元的价格卖完后,结果发现自己赔了钱则>解之得,x>y.所以赔钱的原因是x>y.故选B.11、C【解析】
根据平方根的概念:如果一个数x的平方等于a,即,那么这个数x叫做a的平方根,即可得出答案.【详解】,∴4的平方根是,故选:C.【点睛】本题主要考查平方根的概念,掌握平方根的概念是解题的关键.12、D【解析】
、根据条形统计图找出人数最多的分数段即可做出判断;、各分数段人数相加求出总人数即可做出判断;、根据条形统计图找出人数最少的分数段即可做出判断;、找出不低于60分的人数即可做出判断.【详解】解:由频数分布直方图知得分在分之间的人数最多,选项正确;该班的总人数为,选项正确;得分在分之间的人数最少,选项正确;不及格分)人数是4,选项错误;故选:.【点睛】此题考查了频数(率分布直方图,弄清题意是解本题的关键.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、100【解析】
根据平行线定理即可解答.【详解】解:已知AB//CD//EF,CG平分∠BCE,∠B=120°,∠GCD=10°,根据AB//DC可得∠BCD=60°,故∠BCG=70°,即∠GCE=∠BCG=70°,∠DCE=80°,又因为DC//FE,故∠E=100°.【点睛】本题考查平行线定理,两直线平行,同旁内角互补.14、-1,-2【解析】
首先解不等式求得不等式的解集,然后确定解集中的负整数即可.【详解】解不等式3x+2⩾−5,移项,得:3x⩾−7,则x⩾.故负整数解是:−1,−2.故答案是:−1,−2【点睛】此题考查一元一次不等式的整数解,解题关键在于掌握运算法则15、1【解析】
试题分析:先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有30条鱼做上标记,即可得出答案.解:∵打捞200条鱼,发现其中带标记的鱼有5条,∴有标记的鱼占×100%=2.5%,∵共有30条鱼做上标记,∴鱼塘中估计有30÷2.5%=1(条).故答案为1.考点:用样本估计总体.16、10cm.【解析】
根据相似垂直平分线的性质得到DA=DC,EC=EB,根据三角形的周长公式计算即可.【详解】∵边AC和BC的垂直平分极分别交AB于D、E两点,
∴DA=DC,EC=EB,
∴△CDE的周长=CD+DE+EC=AD+DE+EB=AB=10cm,
故答案为:10cm.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17、1【解析】
根据平移的距离表示出长方形A'ECF的长和宽,即可求出结论.【详解】解:由题意得到BE=3cm,DF=4cm,
∵AB=DC=7cm,BC=10cm,
∴EC=BC-BE=10cm-3cm=7cm,FC=DC-DF=7cm-4cm=3cm,
∴长方形A'ECF的周长=2×(7+3)=1(cm),
故答案为1.【点睛】本题考查了平移的性质,认准图形,准确求出长方形A'ECF的长和宽是解题的关键.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、不等式组的解集为-1.5≤x<4,最大整数解为1,见解析.【解析】
先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【详解】解:解不等式①得:x≥-1.5,解不等式②得:x<4,∴不等式组的解集为-1.5≤x<4,在数轴上表示不等式组的解集为:,∴不等式组的最大整数解为1.【点睛】本题考查了解一元一次不等式组,不等式组的整数解,在数轴上表示不等式组的解集的应用,能根据找不等式组解集的规律找出不等式组的解集是解此题的关键.19、(1)18°(2)18°(3)∠EPF=【解析】
(1)利用三角形内角和定理和角平分线定义求出∠BAE=36°,然后根据直角三角形的性质求出∠BAD=18°,问题得解;(2)首先求出∠AEB=72°,然后根据直角三角形的性质求解即可;(3)如图2,同(1)(2)步骤可得结论.【详解】(1)∠BAC=180°-36°-72°=72°,∵AE是△ABC的角平分线,∴∠BAE=36°,∵AD⊥BC,∴∠BAD=90°-72°=18°,∴∠DAE=∠BAE-∠BAD=36°-18°=18°;(2)∵∠B=72°,∠BAE=36°,∴∠AEB=180°-72°-36°=72°,∵PF⊥BC,∴在三角形EPF中,∠EPF=90°-∠AEB=90°-72°=18°;(3)∠EPF=,理由:∵AE为角平分线,∴∠BAE=(180°-∠B-∠C),∴∠AEB=180°-∠B-∠BAE=180°-∠B-(180°-∠B-∠C)=90°-∠B+∠C,在三角形EPF中,∠EPF=90°-∠AEB=90°-(90°-∠B+∠C)=.【点睛】本题考查了三角形内角和定理、角平分线的性质以及直角三角形的性质,是基础题,准确识别图形是解题的关键.20、探究一:∠FDC+∠ECD=180°+∠A;探究二:∠P=90°+12∠A;探究三:∠P=1【解析】
探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=12∠ADC,∠PCD=12探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可.【详解】解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=12∠ADC,∠PCD=1∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣12∠ADC﹣1=180°﹣12=180°﹣(180°﹣∠A)=90°+12探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=12∠ADC,∠PCD=1∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣12∠ADC﹣1=180°﹣12=180°﹣12=12故答案为探究一:∠FDC+∠ECD=180°+∠A;探究二:∠P=90°+12∠A;探究三:∠P=1【点睛】本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.21、(1)1845(2)1小时(3)【解析】
(1)根据速度=路程÷时间得出答案;(2)根据函数图像中的数据可以求得汽车比摩托车早多长时间达B地;(3)设在汽车出发后x小时,汽车和摩托车相遇,根据所行驶的路程相等列出方程,从而得出答案.【详解】(1)摩托车的速度为90÷5=18千米/小时;汽车的速度为90÷2=45千米/小时;(2)5-4=1即汽车比摩托车早1小时到达B地故答案为1.(3)解:设在汽车出发后x小时,汽车和摩托车相遇,∴45x=18(x+2),解得:x=,∴在汽车出发后小时,汽车和摩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能硬件研发合作合同(2篇)
- 《餐饮服务与管理》课件-教学课件:中餐宴会服务
- 2025届高三押题信息卷(一)地理及答案
- 蝶骨嵴脑膜瘤的临床护理
- 团建新质生产力活动
- 2025年人教版小学数学一年级上册期中考试卷(带答案)
- 新质生产力新愿望
- 2025年监理工程师之水利工程目标控制自我检测试卷B卷附答案
- 2025年执业药师之西药学专业二全真模拟考试试卷B卷含答案
- 2020-2024年上海市秋考语文试题汇编含答案
- 商砼安全生产风险分级管控制度
- 强酸强碱烧伤及中毒的处理方法
- 厂家管道吹扫方案(参考)
- 超深水油田开发及水下生产系统概述-37页的简介
- 轧钢高线车间装配工工艺规程
- 法制副校长聘书模板52426
- 钢板桩施工专项方案
- 太湖县赵氏宗谱编纂理事会章程
- 水土保持常用监测表格(共9页)
- PPT翻书动画效果的制作
- 病理学第十六章-神经系统疾病
评论
0/150
提交评论