2023届铜陵市重点中学数学七下期末复习检测模拟试题含解析_第1页
2023届铜陵市重点中学数学七下期末复习检测模拟试题含解析_第2页
2023届铜陵市重点中学数学七下期末复习检测模拟试题含解析_第3页
2023届铜陵市重点中学数学七下期末复习检测模拟试题含解析_第4页
2023届铜陵市重点中学数学七下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年七下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下面的调查中,不适合抽样调查的是()A.一批炮弹的杀伤力的情况B.了解一批灯泡的使用寿命C.全国的人口普查D.全市学生每天参加体育锻炼的时间2.方程组的解为A. B. C. D.3.有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300 B.5×100+5x≥300 C.100+5x>300 D.100+5x≥3004.如图,在△ABC中,∠C=20°,将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于点F,则∠AFB的度数是()A.B.C.D.5.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50° B.51° C.51.5° D.52.5°6.若一个多边形除了一个内角外,其余各内角之和为2570°,则这个内角的度数为(

)A.90° B.105° C.130° D.120°7.如图一是一个解环游戏,一条链子由14个铁圈连在一起,要使这14个铁圈环环都脱离,例如图二只需要解开一个圈即可环环都脱离.要解开图一的链子至少要解开几个圈呢?()A.5个 B.6个 C.7个 D.8个8.4的平方根是()A.±2 B.2 C.-2 D.±9.说明“如果x<2,那么x2<4”是假命题,可以举一个反例x的值为()A. B. C.0 D.10.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是()A. B. C. D.二、填空题(本大题共有6小题,每小题3分,共18分)11.图所示,直角三角板的60∘角压在一组平行线上,AB∥CD,∠ABE=36∘,则12.如图,在四边形ABCD中,AB=BC,∠ABC=90°,连接AC,BD,BD⊥CD,AE⊥BD,垂足为E,若AB=10,CD=1,则AD的长度为_____.13.如果整式恰好是一个整式的平方,则的值是__________.14.已知方程2x2n-1-3y3m-1+1=0是二元一次方程,则m+n=______15.若是关于x、y的方程x+ay=3的解,则a值为_____.16.在△ABC中,已知两条边a=3,b=4,则第三边c的取值范围是_________.三、解下列各题(本大题共8小题,共72分)17.(8分)(1)(问题情境)如图1,,,.求的度数.小明想到了以下方法(不完整),请完成填写理由或数学式:如图1,过点P作,∴.()又,(已知)∴.()∵,(已知)∴,()∴.()∵,∴.∴.即.(2)(问题迁移)如图2,,点P在AB,CD外,问,,之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点G,用含有的式子表示的度数.18.(8分)为了加强对校内外安全监控,创建平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.甲型乙型价格(元/台)ab有效半径(米/台)150100(1)求a、b的值;(2)若购买该批设备的资金不超过11000元,且要求监控半径覆盖范围不低于1600米,两种型号的设备均要至少买一台,请你为学校设计购买方案,并计算最低购买费用.19.(8分)在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D在直线BC上运动(不与点B、C重合),点E在射线AC上运动,且∠ADE=∠AED,设∠DAC=n.(1)如图(1),当点D在边BC上时,且n=36°,则∠BAD=_________,∠CDE=_________.(2)如图(2),当点D运动到点B的左侧时,其他条件不变,请猜想∠BAD和∠CDE的数量关系,并说明理由.(3)当点D运动到点C的右侧时,其他条件不变,∠BAD和∠CDE还满足(2)中的数量关系吗?请画出图形,并说明理由.20.(8分)将一个底面半径是5cm,高为10cm的圆柱形冰激凌盒改造成一个直径为20cm的圆柱形冰激凌盒,若体积不变,高为多少厘米?(用方程解)21.(8分)已知:如图(1),如果AB∥CD∥EF.那么∠BAC+∠ACE+∠CEF=360°.老师要求学生在完成这道教材上的题目后,尝试对图形进行变式,继续做拓展探究,看看有什么新发现?(1)小华首先完成了对这道题的证明,在证明过程中她用到了平行线的一条性质,小华用到的平行线性质可能是______________.(2)接下来,小华用《几何画板》对图形进行了变式,她先画了两条平行线AB,EF,然后在平行线间画了一点C,连接AC,EC后,用鼠标拖动点C,分别得到了图(2)(3)(4),小华发现图(3)正是上面题目的原型,于是她由上题的结论猜想到图(2)和(4)中的∠BAC,∠ACE与∠CEF之间也可能存在着某种数量关系.然后,她利用《几何画板》的度量与计算功能,找到了这三个角之间的数量关系.请你在小华操作探究的基础上,继续完成下面的问题:①猜想:图(2)中∠BAC,∠ACE与∠CEF之间的数量关系:.②补全图(4),并直接写出图中∠BAC,∠ACE与∠CEF之间的数量关系:.(3)小华继续探究:如图(5),若直线AB与直线EF不平行,点G,H分别在直线AB、直线EF上,点C在两直线外,连接CG,CH,GH,且GH同时平分∠BGC和∠FHC,请探索∠AGC,∠GCH与∠CHE之间的数量关系?并说明理由.22.(10分)解不等式组:并把它的解集在数轴上表示出来.23.(10分)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?24.(12分)已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:①1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?②请你帮该物流公司设计租车方案.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、了解一批炮弹的杀伤力的情况,由于破坏性强,适合抽样调查,故选项错误;

B、了解一批灯泡的使用寿命,调查具有破坏性,适合抽样调查,故选项错误;

C、全面人口普查,适合全面调查,故选项正确;

D、全市学生每天参加体育锻炼的时间,适合抽样调查,故选项错误.

故选C.【点睛】本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、D【解析】

根据方程组解的概念,将4组解分别代入原方程组,一一进行判断即可.【详解】解:将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.3、D【解析】

设从第6天起每天要读x页,根据前5天共读的页数+从第6天起每天要读的页数×5≥1可得不等式求解.【详解】依题意有100+5x≥1.故选D.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,找出题目中的不等关系,选准不等号.4、C【解析】

先根据旋转的性质得∠CAE=60°,再利用三角形内角和定理计算出∠AFC=100°,然后根据邻补角的定义易得∠AFB=80°.【详解】∵△ABC绕点A顺时针旋转60°得△ADE,∴∠CAE=60°,∵∠C=20°,∴∠AFC=100°,∴∠AFB=80°.故选C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.5、D【解析】

根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE=∠BED=(180°﹣25°)=77.5°,根据平角的定义即可求出∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°【详解】∵AC=CD=BD=BE∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED∵∠CDA=∠B+∠DCB即∠CDA=2∠B∴∠B=25°∴∠BDE=∠BED=(180°﹣25°)=77.5°∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°故答案选D.【点睛】本题考查等腰三角形的性质;三角形内角和定理;三角形的外角性质.6、C【解析】

本题主要考查了多边形的外角和内角.先用2570°÷180°,看余数是多少,再把余数补成180°【详解】解:∵2570°÷180°=14…50°,又130°+50°=180°∴这个内角度数为130°故选C7、C【解析】

通过观察图形,找到铁圈的方法:解开1、3、5、…、13个环即可.【详解】只要解开1、3、5、…、13个环即可环环都脱离,=1.所以只要解开1个环即可环环都脱离.故选:C.【点睛】本题考查了找规律,解题的关键是能够看出解开奇数个环即可环环脱离.8、A【解析】

根据平方根的定义即可求解.【详解】4的平方根是±2故选A.【点睛】此题主要考查平方根,解题的关键是熟知平方根的定义.9、B【解析】

找出x满足x<2,但不满足x2<2即可.【详解】解:如果x<2,那么x2<2是假命题,可以举一个反例为x=-1.因为x=-1满足条件x<2,但不满足x2<2.故选B.【点睛】本题考查了命题与定义:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.判断一个命题是假命题,只需举出一个反例即可.10、A【解析】

本题的等量关系是:绳长-木长=4.5;木长-×绳长=1,据此列方程组即可求解.【详解】设绳子长x尺,木条长y尺,依题意有.故选A.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.二、填空题(本大题共有6小题,每小题3分,共18分)11、24【解析】

如图延长BE交CD于H.利用平行线的性质求出∠EHD,再利用三角形的外角的性质解决问题即可【详解】解:如图延长BE交CD于H.

∵AB∥CD,

∴∠ABE=∠BHD=36°,

∵∠BED=∠EHD+∠EDC=60°,

∴∠EDC=1°,

故答案为1.【点睛】本题考查平行线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12、13【解析】

首先根据已知条件可判定∠ABE=∠BCD,即可判定△ABE≌△BCD(ASA),进而得出BD=AE,CD=BE,再根据勾股定理即可得出AD的长度.【详解】解:∵∠ABC=90°,BD⊥CD,∴∠CBD+∠ABD=∠CBD+∠BCD=90°∴∠ABE=∠BCD又∵AB=BC,∴△ABE≌△BCD(ASA)∴BD=AE,CD=BE又∵AB=10,CD=1,∴BD=BC∴DE=BD-BE=3-1=2∴AD=【点睛】此题主要考查三角形全等的判定,勾股定理,熟练运用即可解题.13、25【解析】

根据完全平方公式的特点即可求解.【详解】∵=为整式的平方∴m=52=25.故填25.【点睛】此题主要考查完全平方公式,解题的关键是熟知完全平方公式的特点.14、【解析】

根据二元一次方程的定义,x、y的次数都是1.【详解】解:∵方程2x2n-1-3y3m-1=0是关于x、y的二元一次方程,

解得.∴m+n=

故答案为.【点睛】本题考查了二元一次方程的定义,解答此题,关键是利用指数为1建立方程组.15、1【解析】

把代入方程x+ay=3,可得2+a=3,解方程即可求得a的值.【详解】∵是关于x、y的方程x+ay=3的解,∴代入得2+a=3,解得a=1,故答案为:1.【点睛】本题考查了二元一次方程的解的定义,熟知二元一次方程的解的定义是解决问题的关键.16、1<c<1【解析】解:根据三角形的三边关系,得4-3<AC<4+3,1<AC<1.三、解下列各题(本大题共8小题,共72分)17、(1)两直线平行,内错角相等;等量代换;平行于同一条直线的两直线平行;两直线平行,同旁内角互补;(2),理由见解析;(3)【解析】

(1)根据平行线的性质与判断,即可解答.

(2)过P点作,则,根据平行线的性质得出,进而得到;

(3)令与交点为,连接如图3,在中,利用三角形内角和定理进行计算,由(2)知,得到,即可解答.【详解】如图1,过点P作,∴.(两直线平行,内错角相等)又,(已知)∴.(等量代换)∵,(已知)∴,(平行于同一条直线的两直线平行)∴.(两直线平行,同旁内角互补)∵,∴.∴.即.(2)如图2,过P点作,则,∴,∵,∴,∵,∴,∴,即.(3)令与交点为,连接如图3,在中,,∵,,∴,∵由(2)知,∴,而,∴,∴.【点睛】此题考查平行线的性质的运用,三角形内角和定理,解决问题的关键是作辅助线构造同旁内角以及内错角,依据平行线的性质进行推导计算.18、(1)a=850,b=700;(2)最省钱的购买方案为:购甲型设备2台,乙型设备11台.【解析】

(1)根据购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买1台乙型设备少400元,可列出方程组,解之即可得到a、b的值;(2)可设购买甲型设备x台,则购买乙型设备(15﹣x)台,根据购买该批设备的资金不超过11000元、监控半径覆盖范围不低于1600米,列出不等式组,根据x的值确定方案,然后对所需资金进行比较,并作出选择.【详解】解:(1)由题意得:,解得;(2)设购买甲型设备x台,则购买乙型设备(15﹣x)台,依题意得,解不等式①,得:x≤1,解不等式②,得:x≥2,则2≤x≤1,∴x取值为2或1.当x=2时,购买所需资金为:850×2+700×11=10800(元),当x=1时,购买所需资金为:850×1+700×12=10950(元),∴最省钱的购买方案为:购甲型设备2台,乙型设备11台.【点睛】本题考查了一元一次不等式组及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.要会用分类的思想来解决讨论方案的问题.19、64°32°【解析】

(1)由∠BAC=100°,可求出∠ABC=∠ACB=40°,当∠DAC=36°时,根据∠BAD=∠BAC-∠DAC可求出∠BAD的度数,根据等腰三角形的性质求出∠ADE=∠AED的度数,再根据三角形的外角的性质求解.(2)由思路(1)可知∠ABC=∠ACB=40°,以及∠ADE=∠AED=,∠CDE=∠ACB-∠AED,∠BAD=n-100°,即可求解.(3)根据(1)的思路,可知∠ABC=∠ACB=40°,∠ADE=∠AED=,∠CDE=∠ACD-∠AED,∠BAD=100°+n,即可求解.【详解】(1)∠BAD=∠BAC-∠DAC=100°-36°=64°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+64°=104°.∵∠DAC=36°,∠ADE=∠AED,∴∠ADE=∠AED=72°,∴∠CDE=∠ADC-∠ADE=104°-72°=32°.故答案为64°,32°.(2)∠BAD=2∠CDE,理由如下:如图(2),在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=.∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-=.∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE;(3)∠BAD=2∠CDE,理由如下:如图(3),在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=.∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-=.∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点睛】此题主要考查了三角形的内角和及其外角的性质,熟练掌握三角形的内角和的性质和三角形的外角的性质是解题关键.20、高为2.5厘米【解析】

根据体积不变和圆柱的体积公式列方程求解即可.【详解】解:设改造后的高为x厘米改造前的底面半径为5cm,改造后的半径为20÷2=10cm;改造前的高为10cm,改造后的高为xcm;改造前的体积为π×52×10;改造后的体积为π×102×x;∴列出方程为π×52×10=π×102×x,解得x=2.5,答:高为2.5厘米.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系.21、(1)两直线平行,同旁内角互补.(2)①∠ACE=∠BAC+∠FEC.②∠ACE=∠FEC-∠BAC.(3)2∠GCH=∠AGC+∠CHE.【解析】

(1)根据两直线平行同旁内角互补即可解决问题;(2)①猜想∠ACE=∠BAC+∠FEC.过点C作CD∥AB.利用平行线的性质即可解决问题;②∠BAC,∠ACE与∠CEF之间的数量关系是∠ACE=∠FEC-∠BAC.利用平行线的性质以及三角形的外角的性质即可解决问题;(3)延长AB,EF,交于点P,依据∠CGP=180°-∠AGC,∠CHP=180°-∠CHE,即可得到∠CGP+∠CHP=360°-(∠AGC+∠CHE),再根据四边形内角和,即可得到四边形GCHP中,∠C+∠P=360°-(∠CGP+∠CH)=∠AGC+∠CHE,进而得出结论.【详解】(1)如图,∵AB∥CD∥EF∴∠BAC+∠ACD=180°,(两直线平行,同旁内角互补)∠DCE+∠CEF=180°,(两直线平行,同旁内角互补)∴∠BAC+∠ACD+∠DCE+∠CEF=∠BAC+∠ACE+∠CEF=360°.故答案为:两直线平行,同旁内角互补.(2)①图(2)中∠BAC,∠ACE与∠CEF之间的数量关系:∠ACE=∠BAC+∠FEC.证明:过点C作CD∥AB,如图,∴∠BAC=∠ACD,∵AB∥EF,∴EF∥CD,∴∠DCE=∠CEF∴∠ACD+∠DCE=∠BAC+∠CEF,即∠ACE=∠BAC+∠FEC.②连接AC,CE交AB于点D,如图,∵AB∥EF∴∠BDC=∠CEF,∵∠BDC=∠BAC+∠ACE∴∠CEF=∠BAC+∠ACE,即∠ACE=∠FEC-∠BAC.(3)延长AB,EF,交于点P,如图,∵GH同时平分∠BGC和∠FHC,∴∠CGH=∠BGH,∠CHG=∠FHG,∴∠C=∠P,∵∠CGP=180°-∠AGC,∠CHP=180°-∠CHE,∴∠CGP+∠CHP=360°-(∠AGC+∠CHE),∵四边形GCHP中,∠C+∠P=360°-(∠CGP+∠CH)=360°-[360°-(∠AGC+∠CHE)]=∠AGC+∠CHE,即2∠GCH=∠AGC+∠CHE.【点睛】本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论