2022-2023学年广东省东莞市虎门外国语学校七年级数学第二学期期末质量检测模拟试题含解析_第1页
2022-2023学年广东省东莞市虎门外国语学校七年级数学第二学期期末质量检测模拟试题含解析_第2页
2022-2023学年广东省东莞市虎门外国语学校七年级数学第二学期期末质量检测模拟试题含解析_第3页
2022-2023学年广东省东莞市虎门外国语学校七年级数学第二学期期末质量检测模拟试题含解析_第4页
2022-2023学年广东省东莞市虎门外国语学校七年级数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年七下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下图所表示的不等式组的解集为()A.x>3 B.-2<x<3 C.x>-2 D.-2>x>32.若,则下列不等式正确的是()A. B. C. D.3.下列各式由左边到右边的变形中,是因式分解的为()A.m(x+y)=mx+my B.8x2﹣4x=4x(2x﹣1)C.x2﹣6x+5=x(x﹣6)+5 D.x2﹣9+2x=(x+3)(x﹣3)+2x4.如图,在平面直角坐标系上有点,点第一次跳动至点,第二次点跳动至点,第三次点跳动至点,第四次点跳动至点,……依此规律跳动下去,则点与点之间的距离是()A.2021 B.2020 C.2019 D.20185.任何一个三角形的三个内角中,至少有_____A.一个锐角 B.两个锐角 C.一个钝角 D.一个直角6.若点P(a,b)在第三象限,则点M(b-1,-a+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.要了解某校初中学生的课外作业负担情况,若采用抽样调查的方式进行调查,则下面哪种调查具有代表性()A.调查该校全体女生B.调查该校全体男生C.调查该校七、八、九年级各100名学生D.调查该校九年级全体学生8.如图,的同旁内角是()A. B. C. D.9.五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋A所在点的坐标是(﹣2,2),黑棋B所在点的坐标是(0,4),现在轮到黑棋走,黑棋放到点C的位置就获得胜利,点C的坐标是()A.(3,3) B.(3,2) C.(5,2) D.(4,3)10.在平面直角坐标系中,若点在第四象限,则点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(本大题共有6小题,每小题3分,共18分)11.如图,点E、F是四边形ABCD的边AD、BC上的点,连接EF,将四边形ABFE沿直线EF折叠,若点A,点B都落在四边形ABCD内部,记∠C+∠D=α,则∠1+∠2=______°.12.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如下表:如果卖出的香蕉数量用x(千克)表示,售价用y(元)表示,则y与x的关系式为_________;13.若x2+x+m2是一个完全平方式,则m=_____.14.在一次“普法”知识竞赛中,竞赛题共20道,每道题都给出4个答案,其中只有一个答案正确,选对得5分,不选或选错扣1分,张华得分不低于70分,设张华答对道题,可得不等式:______.15.在平面直角坐标系中,将点A向右平移2个单位长度后得到点A′(3,2),则点A的坐标是_______.16.已知点A(3+2a,3a﹣5),点A到两坐标轴的距离相等,点A的坐标为_____.三、解下列各题(本大题共8小题,共72分)17.(8分)计算:18.(8分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.19.(8分)如图,已知在△ABC中,AB=AC,BC=12厘米,点D为AB上一点且BD=8厘米,点P在线段BC上以2厘米/秒的速度由B点向C点运动,设运动时间为t,同时,点Q在线段CA上由C点向A点运动.(1)用含t的式子表示PC的长为_______________;(2)若点Q的运动速度与点p的运动速度相等,当t=2时,三角形BPD与三角形CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,请求出点Q的运动速度是多少时,能够使三角形BPD与三角形CQP全等?20.(8分)这是一个动物园游览示意图,彤彤同学为了描述这个动物园图中每个景点位置建了一个平面直角坐标系,南门所在的点为坐标原点,回答下列问题:(1)分别用坐标表示狮子、飞禽、两栖动物,马所在的点.,,,.(2)动物园又新来了一位朋友大象,若它所在点的坐标为(3,﹣2),请直接在图中标出大象所在的位置.(描出点,并写出大象二字)(3)若丽丽同学建了一个和彤彤不一样的平面直角坐标系,在丽丽建立的平面直角坐标系下,飞禽所在的点的坐标是(﹣1,3)则此时坐标原点是所在的点,此时南门所在的点的坐标是.21.(8分)求不等式(2x﹣1)(x+1)>0的解集.解:根据“同号两数相乘,积为正”可得:①或②.解①得x>;解②得x<﹣1.∴不等式的解集为x>或x<﹣1.请你仿照上述方法解决下列问题:(1)求不等式(2x﹣1)(x+1)<0的解集.(2)求不等式≥0的解集.22.(10分)(1)解方程组:;(2)解方程:.23.(10分)解不等式组,并将解集表示在数轴上.24.(12分)在平面直角坐标系xOy中,△ABC的三个顶点分别是A(-2,0),B(0,3),C(3,0).(1)在所给的图中,画出这个平面直角坐标系;(2)点A经过平移后对应点为D(3,-3),将△ABC作同样的平移得到△DEF,点B的对应点为点E,画出平移后的△DEF;(3)在(2)的条件下,点M在直线CD上,若DM=2CM,直接写出点M的坐标.

参考答案一、选择题(每小题3分,共30分)1、A【解析】根据解集的数轴表示,可知不等式组的解集为x>3.故选A点睛:此题主要考查了不等式解集的数轴表示,利用数轴上解集的表示,取公共部分即可,注意实心点和虚心点表示的不同意义.2、D【解析】

将原不等式两边分别都减2、都除以4、都乘以6、都乘以-8,根据不等式得基本性质逐一判断即可得【详解】A、将m>n两边都减2得:m-2>n-2,此选项错误;B、将m>n两边都乘以-8,得:-8m<-8n,此选项错误C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都除以4得:,此选项正确;;故选:D.【点睛】此题考查不等式的性质,解题关键在于掌握运算法则3、B【解析】A、是多项式乘法,不是因式分解,错误;B、是因式分解,正确;C、右边不是积的形式,错误;D、右边不是积的形式,错误.故选B.4、A【解析】

根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动的横坐标是相邻的下次偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2019与点A2020的坐标,进而可求出点A2019与点A2020之间的距离.【详解】观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2020次跳动至点的坐标是(1011,1010),第2019次跳动至点A2019的坐标是(﹣1010,1010).∵点A2019与点A2020的纵坐标相等,∴点A2019与点A2020之间的距离=1011﹣(﹣1010)=1.故选A.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.5、B【解析】三角形内角和=180°,故三个内角中,至少有两个锐角.故选B6、B【解析】分析:根据第三象限内点的横坐标与纵坐标都是负数判断出a、b的正负情况,再判断出点M的横坐标与纵坐标的正负情况,然后根据各象限内点的坐标特征解答.详解:∵点P(a,b)在第三象限,∴a<0,b<0,∴b-1<0,-a+1>0,∴点M(b-1,-a+1)在第二象限.故选B.点睛:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、C【解析】

根据“抽样调查”的相关要求进行分析判断即可.【详解】∵“调查全体女生”、“调查全体男生”和“调查九年级全体学生”都只是调查了该校部分特定的学生,不能反映全校的情况,而“调查七、八、九三个年级各100名学生”能够比较全面的反映该校学生作业的负担情况,∴上述四种调查方式中,选项C中的调查方式更具有代表性.故选C.【点睛】知道“在抽样调查中怎样选取样本才能使样本更有代表性”是解答本题的关键.8、B【解析】

两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.【详解】解:由图可得,∠2与∠4是BD与EF被AB所截而成的同旁内角,∴∠2的同旁内角是∠4,故选B.【点睛】此题主要考查了同旁内角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.9、A【解析】

根据题意可以画出相应的平面直角坐标系,从而可以得到点C的坐标.【详解】解:由点B(0,4)向下平移4个单位,即是坐标原点,画出如图所示的平面直角坐标系,故点C的坐标为(3,3),故选:A.【点睛】本题考查坐标确定位置,解题的关键是明确题意,建立合适的平面直角坐标系.10、D【解析】

首先确定m、n的取值,然后再确定1-n的符号,进而可得点B所在象限.【详解】∵点A(-m,n)在第四象限,∴-m>0,n<0,∴m<0,∵n<0,∴1-n>0,∴点B(1-n,m)第四象限.故选D.【点睛】此题主要考查了点的坐标,关键是掌握第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).二、填空题(本大题共有6小题,每小题3分,共18分)11、360°-2α.【解析】

根据四边形内角和为360°可得∠A+∠B=360°-α,进而可得∠AEF+∠BFE=α,再根据折叠可得∠3+∠4=α,再由平角定义可得答案.【详解】如图,∵∠A+∠B+∠C+∠D=360°,∠C+∠D=α,∴∠A+∠B=360°-α,∵∠A+∠B+∠AEF+∠BFE=360°,∴∠AEF+∠BFE=360°-(∠A+∠B)=α,由折叠可得:∠3+∠4=α,∴∠1+∠2=360°-2α.故答案为:360°-2α.【点睛】此题主要考查了翻折变换,关键是找准翻折后哪些角是对应相等的.12、y=3x【解析】观察表中数据可知y与x之间是一次函数关系,设y=kx+b(k≠0)将x=0.5,y=1.5和x=1,y=3代入y=kx+b(k≠0)中,得,解得故y与x的关系式为y=3x;点睛:根据实际问题确定一次函数关系式关键是读懂题意,建立一次函数的数学模型来解决问题.描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象再判断时一次函数还是其他函数,再利用待定系数法求解相关的问题.13、±.【解析】

根据完全平方式x2+x+m2=x2+x+,即可求出答案.【详解】∵x2+x+m2是一个完全平方式,

∴x2+x+m2=x2+x+,

∴m=±.

故答案为:±.【点睛】本题考查完全平方式,解题的关键是熟练掌握完全平方式.14、【解析】

设张华答对道题,则答错的题为(20﹣x)道,根据“选对得5分,不选或选错扣1分,张华得分不低于70分,”列出不等式即可.【详解】解:设张华答对道题,则答错的题为(20﹣x)道,根据题意得:.故答案为:.【点睛】本题主要考查列不等式,解此题的关键在于准确理解题意,设出未知数,找到题中不等关系列出不等式.15、(1,2).【解析】

根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.因此,【详解】∵将点A向右平移2个单位长度后得到点A′(3,2),∴点A的坐标是(3﹣2,2),即点A的坐标为(1,2).考点:坐标与图形的平移变化.16、(19,19)或(,-)【解析】

根据点A到两坐标轴的距离相等,分两种情况讨论:3+2a与3a﹣5相等;3+2a与3a﹣5互为相反数.【详解】根据题意,分两种情况讨论:①3+2a=3a﹣5,解得:a=8,∴3+2a=3a﹣5=19,∴点A的坐标为(19,19);②3+2a+3a﹣5=0,解得:a=,∴3+2a=,3a﹣5=﹣,∴点A的坐标为(,﹣).故点A的坐标为(19,19)或(,-),故答案为:(19,19)或(,-).【点睛】本题考查了点的坐标,解决本题的关键是根据点A到两坐标轴的距离相等,分两种情况讨论.三、解下列各题(本大题共8小题,共72分)17、【解析】分析:原式利用绝对值的代数意义,立方根定义计算即可得到结果.详解:原式==点睛:此题考查了实数的混合运算,正确运用绝对值的代数意义、立方根化简合并,是解题的关键.18、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解析】解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得:。答:每台电脑0.5万元,每台电子白板1.5万元。(2)设需购进电脑a台,则购进电子白板(30-a)台,则,解得:,即a=15,16,17。故共有三种方案:方案一:购进电脑15台,电子白板15台.总费用为万元;方案二:购进电脑16台,电子白板14台.总费用为万元;方案三:购进电脑17台,电子白板13台.总费用为万元。∴方案三费用最低。(1)设电脑、电子白板的价格分别为x,y元,根据等量关系:“1台电脑+2台电子白板=3.5万元”,“2台电脑+1台电子白板=2.5万元”,列方程组求解即可。(2)设计方案题一般是根据题意列出不等式组,求不等式组的整数解。设购进电脑x台,电子白板有(30-x)台,然后根据题目中的不等关系“总费用不超过30万元,但不低于28万元”列不等式组解答。19、(1)PC=12-2t;(2)ΔBPD≌ΔCQP理由见详解;(3)cm/s【解析】

(1)根据BC=12cm,点P在线段BC上以2厘米/秒的速度由B点向C点运动,所以当t秒时,运动2t,因此PC=12-2t.(2)若点Q的运动速度与点p的运动速度相等,当t=2s时,则CQ=4cm,BP=4cm,因为BC=12cm,所以PC=8cm,又因为BD=8cm,AB=AC,所以∠B=∠C,因此求出ΔBPD≌ΔCQP.(3)已知∠B=∠C,BP≠CQ,根据ΔBPD≌ΔCQP得出BP=PC,进而算出时间t,再算出v即可.【详解】(1)由题意得出:PC=12-2t(2)若点Q的运动速度与点p的运动速度相等,当t=2s时,则CQ=4cm,BP=4cm,∵BC=12cm,∴PC=8cm,又∵BD=8cm,AB=AC,∴∠B=∠C,在ΔBPD和ΔCQP中,CQ=BP,∠B=∠C,PC=BD,∴ΔBPD≌ΔCQP(SAS).(3)若点Q的运动速度与点P的运动速度不相等,∵Vp≠VQ,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=PC=6cm,CQ=BD=8cm,∴点P、点Q运动的时间t==3s,∴VQ===cm/s,即Q的速度为cm/s.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,但是有一定的难度.20、(1)(﹣4,5),(3,4),(4,1),(﹣3,﹣3);(2)如图所示见解析;(3)两栖动物,(﹣4,﹣1).【解析】

(1)直接利用原点位置建立平面直角坐标系,进而得出答案;(2)利用已知平面直角坐标系得出大象的位置;(3)利用飞禽所在的点的坐标是(﹣1,3)得出原点位置进而得出答案.【详解】(1)狮子所在点的坐标为:(﹣4,5),飞禽所在点的坐标为:(3,4),两栖动物所在点的坐标为:(4,1),马所在点的坐标为:(﹣3,﹣3);故答案为(﹣4,5),(3,4),(4,1),(﹣3,﹣3);(2)如图所示:(3)当飞禽所在的点的坐标是(﹣1,3),则此时坐标原点是两栖动物所在的点,此时南门所在的点的坐标是:(﹣4,﹣1).故答案为两栖动物,(﹣4,﹣1).【点睛】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.21、(1)﹣1<x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论